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Abstract

We introduce a framework of electoral competition in whiciiers have general preferences over
candidates’ immutable characteristics (such as genaerorgreviously committed policy positions)
and flexible policy positions. Candidates are uncertaiuati® distribution of voter preferences and
choose policy positions to maximize their winning probiil

We characterize a property of voter utility functions (“form candidate ranking”, UCR) that
captures a form of separability between fixed charactesisthd policy. When voters have UCR
preferences, candidates’ equilibrium policies convenganiy strict equilibrium. In contrast, notions
like competence or complementarity lead to non-UCR prefege and policy divergence. In particu-
lar, we introduce a new class of models that contains theghitistic voting model as a special case
and in which there is a unique equilibrium that genericatigtfires policy divergence.
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1 Introduction

The political competition model introduced by Downs (198Ralyzes a setup in which two candidates
choose a platform from a one-dimensional set of feasibleips| such as the interval,[0]. All voters
have single-peaked preferences over this policy spaceanididates are ex-ante identical and purely
office-motivated, they propose identical policies to voteasnaly the one that maximizes the utility of
the median voter. The question we address in this paper iwthgolicy convergence is a robust feature
of political competition if we admit a more general policyasg and, in particular, more general voter
preferences, but otherwise keep Downs’s assumption of fiweemotivated candidates who compete
under plurality rule.

To answer this question, we introduce a model where carefidetve some unchangeable character-
istics like their previous experience, gender or race. ditypdssues, candidates are flexible, and they
are willing to use these positions as tools to maximize tlobability of getting elected. Voters’ prefer-
ences are defined over the candidates’ vectors of chatider@nd policies, and are completely general.
In particular, we do not require that preferences are sbpmexross characteristics and issues; funda-
mentally, this is the main departure from the existing dtare. The distribution of voter preferences
depends on a state variable that is unknown to candidatbe #iite they choose their positions.

Our first and very straightforward result, Theorem 1, shdwasditferentiated fixed characteristics are
a necessary condition for (generic) equilibria with politiyergence to arise, even if we admit arbitrary
voter preferences. Intuitively, without fixed charactéeis the candidates’ pagfs on the main diagonal
of the paydf matrix (i.e., if both candidates choose the same policy)egral to ¥2. Since we have
a constant sum game, the winning probabilitiesity pure strategy equilibrium must bg2for each
candidate and, generically, this can only be the case iféhdidates choose the same policy.

This argument, however, breaks down if candidates haterdntiated fixed characteristics. In that
case, it is possible that candidates choogBerint policies in an equilibrium with unequal winning
probabilities because candidates cannot perfectly cogiy tipponent: Even if a candidate chooses the
same policy platform as his opponent, the existence of fikedacteristics implies that many or all voters
can still have strict preferences for one of the candidatiesice, there is no guarantee that imitating the
opponent increases the winning probability of the candiddio has the lower winning probability in an
equilibrium with policy divergence.

This insight raises the question whether there is a classtef ywreferences for which equilibrium
policy convergence is still guaranteed, even if candidatege diferentiated fixed characteristics. We
find such a general property of voter preferences that weuo#ibrm candidate rankingUCR). UCR
does not impose any restrictions on voter preferences iidates choose fierent policies, but if the
two candidates choose the same policy platform, a UCR vbtgrya prefers the same candidate. That
is, suppose that, due to thdfdrence in fixed characteristics, a voter prefers Candidatedandidate 1



if both propose policy; then a UCR voter also prefers Candidate 0 to Candidate Xhfiropose policy
a'. Since every voter votes the same, whether both candidatesea or both chooser’, the UCR as-
sumption implies that the diagonal entries of the gaguatrix must be identical.Using this observation
and the fact that the game is a zero sum game, Theorem 3 shawikdhe is policy convergence in any
strict Nash equilibrium of a voting game with UCR preferenead ex-ante non-identical candidates.

Are UCR preferences aecessarycondition for equilibrium policy convergence? Absent aiddial
conditions, we cannot expect any assumption on individueflepences to be necessary. For example,
if citizens with non-UCR preferences are never pivotalnttiee violation of UCR would not matter for
equilibrium convergence. The same is true if UCR is violdi@dsome policies that are undesirable
for suficiently many voters. However, we show that UCR preferencesdose to necessary”, in the
following sense: If we endow just one individual with non-B@references, then there always exists
a voting game (even in large electorates) where all otharsdiave UCR preferences and the unique
strict Nash equilibrium has policy divergence (TheoremT4jis type of “necessity” is analogous to that
of single-peaked preferences for the existence of a Coatarnner, because single-peakedness of all
voters’ preferences is also not necessary for a Condoragtewito exist, but the existence of a single
voter whose preferences are not single-peaked can lead twtirexistence of a Condorcet winner. As
an alternative approach to show that UCR is “close to necgsieat policy convergence, Section 5 shows
a class of models in which equilibrium policies convergenifl @nly if preferences are UCR.

Most preferences found in models in the literature — suclha®he-dimensional Downsian model,
the Downsian model with uncertainty about the median, thei3an model with valence, or the prob-
abilistic voting model — are additively separable betweardicharacteristics and flexible issues and
can easily be seen to satisfy UCR. While Theorem 2 shows hieatlass of UCR preferences is more
general than the class of additively separable preferetiveie are also natural circumstances in which
voters have non-UCR preferences, and where policies diviarg robust pure strategy equilibrium.

In Section 5, we present such a class of models that captwewmtion of complementarity by gen-
eralizing the classical probabilistic voting model (PVND.the PVM, groups are identified as voters
who have the same “economic” preferences (i.e., prefeseager policies chosen by the candidates),
but within a group, voters may flier with respect to “ideology.” Most papers in the probakiisot-
ing literature operationalize the notion of ideology thghuan additive ideology shock to the economic
preferences, but one way to think about ideology is thatptur@s utility derived from the candidates’
positions on a second policy dimension, orthogonal to fipadity, in which candidates cannot make
credible commitments, but set an optimal policy after tleetbn according to their preferred position.

We explicitly model the relevant policy space as two-dini@msl: In one dimension, candidates are
exogenously fixed while they can choose their policy pasitio the other dimension. If inflierence

10f course, in contrast to the case with identical fixed charéstics, the winning probabilities on the main diagonainat
have to be 12.



curves are exact circles in this two-dimensional space, tiwe fixed and the flexible dimension are com-
pletely independent of each other in the voters’ utility dtions. In this case, the model has a unique
equilibrium with convergence that corresponds to the dayuuim of the standard PVM. In contrast, ellip-
tical indifference curves with the major axis located in a southwesth@ast direction capture a notion
of complementarity between fixed and flexible dimensionhidense that a voter’s ideal policy on the
flexible policy dimension is increasing in the candidataisifion on the fixed dimension. For example,
suppose that two presidential candidate®edin their posture towards international security coopena
(e.g., how willing they are to work within the framework oténnational organization, or also by how
much cooperatigiopposition these candidates would get from internatioo@ra). Candidates are fixed
in this dimension, but they can choose the size of their geganilitary spending. In this context, it
is not implausible that a voter’s ideal defense budget dépen the candidate’s identity, i.e., his fixed
characteristics.

With elliptical preferences, the model still has a uniqueildorium, but one that features policy
divergence. Specifically, the candidate with a higher fixiedracteristic chooses a higher position on
the flexible policy dimension than his opponent. From a taairpoint of view, the model shows the
surprising usefulness of Theorem 3 in a setting with non-U&&erences. Specifically, we show that
the policy space can be transformed in a way that voter meées are UCR in the transformed policy
space. We then apply Theorem 3 to show that the equilibriuthertransformed space is unigue and
features convergence. Re-transformation of the policgespigen shows that the equilibrium in the actual
policy space is still unique, but features divergence.

This new class of non-UCR models captures the natural naticromplementarity and is thus of
direct substantive interest. It also provides us with atétale model in which purely fice-motivated
candidates choose divergent policy platforms — in contagite standard model in whichfice moti-
vated candidates have a strong incentive for platform agevee. One of the most popular models used
to explain policy divergence within the standard spatiahfework assumes that candidates are policy-
motivated, i.e., candidates are willing to lower their abeuof winning in the election in exchange for
being able to implement a particular policy in case they Winus, the reader may ask whether we need
an explanation other than policy motivation for policy diyence, and whether our model is empirically
distinguishable from the model with policy-motivation.

Concerning the first question, we do not see our assumptitofidfe-motivation” as diametrically
opposed to policy-motivation. In fact, it is quite plausilthat candidates are policy-motivated in some is-
sues, but these issues can be captured as “fixed positioost framework. Candidates use the positions
on theremainingissues as tools to get elected —either because they caretabamnaterial aspects of
the dfice (classical flice-motivation), or because they care primarily about thelémentation of their
core convictions. Explaining policy divergencen flexible issue this framework is useful, because by

2By interpreting (some) fixed characteristics as alreadyraiitad policy positions based on candidates’ “core coimict”
while preserving an instrumental interpretation of polahices on other issues, our model also provides a middiendgro



focusing on the standard model of policy motivation, we magsmther interesting and relevant reasons
why divergence arises in practice. In particular, in our glpdivergence may be a strategy that max-
imizes a candidate’s probability of winning, and thus wondd have to be interpreted as an indication
that the candidate is policy-motivated.

Related to the second question, the candidates’ incentiagienerate policy divergencdidr be-
tween our model and the standard model with policy-motivatendidates. Theseftirent incentives
can be used to generate testable predictions that allowparieaily discriminate between the two mod-
els. In the standard spatial model, there are costs and tsenéfpolicy divergence. By choosing a
platform farther away from his opponent’s, a candidatedsadf an increased utility from policy if he
wins against a lower chance of winning. In our model, candglare assumed to maximize the prob-
ability of winning, and in some situations, this will indutfeem to choose positions that diverge from
their opponent’s equilibrium position. Thus, changes eéhvironment thatfect the costs and benefits
(e.g., an increase in the wage of thae-holder) shouldféect policy positions in the Downsian model,
but not in ours. Similarly, the cost of policy divergenceténms of reduction of the winning probability)
is afected by the quality of information about the median votprisferred position. Better and more
easily available opinion polls should translate into sergfiolicy divergence in the standard model. In
contrast, the extent of equilibrium divergence in Sectidas iidependent of the uncertainty about voter
preferences, and thus of the availability and quality ohapi polls.

2 Previous Literature

The platform choice of candidates for politicdtioe is one of the major areas of interest in formal models
of politics. There is a huge literature on the topic of polioywvergence or divergence in one-dimensional
models (or models with one policy dimension and one valeimoemision). For excellent reviews of this
area, see, e.g., Osborne (1995) and Grofman (2004).

There is a large literature that tries to explain, within Br@vnsian model, the empirical observation
that candidates often propose considerably divergentipsli Candidates may diverge even though this
decreases their winning probability, because they caratahe implemented policy (see, e.g., Wittman
(1983), Calvert (1985), Roemer (1994), Martinelli (200Gul and Pesendorfer (2009)). In contrast, in
our model, divergence may increase a candidate’s probabflivinning.

Some models obtain policy divergence witlfige-motivated candidates in a one-dimensional setting
with incomplete information among voters about candiddtaracteristics (e.g. Callander (2008)) or
among candidates about the position of the median votettd@lasira (2003), Bernhardt, Duggan, and
Squintani (2006)). Another branch of literature on diveige with dfice motivation, which is less

between Downsian models, in which candidates are free tosghany position, and the citizen candidate model in which no
commitment is possible.



directly related to our paper, explains policy divergenseenatry deterrence by two dominant parties
(e.g., Palfrey (1984), Callander (2005)).

Both the literature on candidates with valence (e.g. Armilare and Snyder (2000), Groseclose
(2001), Groseclose (2007)) and the probabilistic votingrditure (e.g., Hinich (1978), Lindbeck and
Weibull (1987), Lindbeck and Weibull (1993), Coughlin (2)9Dixit and Londregan (1995), Banks and
Duggan (2005)) share with our paper the feature that voemes looth about candidates’ unchangeable
characteristics and their flexible policy positions. Hoewewoter preferences in all these papers sat-
isfy our UCR-property and thus, by Theorem 3, any pure gyagguilibrium in these models features
convergence.

Krasa and Polborn (2010a) analyze a model witite-motivated candidates in which both fixed
characteristics and flexible positions are binary and gdtawve an additively separable utility function.
The main focus of Krasa and Polborn (2010a) is to charaetenter preference distributions for which
candidates have “majorityfiéecient” positions, and under which conditions candidatesosk majority-
efficient positions in settings where those exist (a positiofiexible issues is majorityfcient if there
is no other position that a majority of voters would prefesnfr that candidate). Since additive voter
preferences satisfy our UCR condition, any equilibriumvédgence” in Krasa and Polborn (2010a) is in
mixed strategies only. In contrast, in Section 5 of the prepaper, we show that divergence can arise in
a strict pure strategy Nash equilibrium when voter prefeesrare of the non-UCR type.

There are a few dispersed papers in the literature in whitérs@re endowed with non-UCR pref-
erences and in which a pure strategy equilibrium thus (caafufe policy-divergence. For example,
Adams and Merrill (2003) analyze a model in which voters havaddition to preferences over policy
positions from the [01] interval, “non-policy preferences” over the two candata which corresponds
to different fixed positions in our setting. They assume that veterg abstain due to being almost in-
different between candidates, or due to “alienation” (if theé#fgrred candidate does not provide them
with sufficient utility). While there is still policy convergence ihis model if voters only abstain from
indifference (see also Erikson and Romero (1990)), they showliktgrdgion from alienation may pro-
vide an incentive for strong divergence. We show that alistermue to alienation leads to non-UCR
preferences, which is the fundamental reason for diveyenéddams and Merrill (2003). Similarly, in
a variation of their basic probabilistic voting model of istdbution between dierent economic groups,
Dixit and Londregan (1996) show that, if candidatefetiin how well they can transfer resources to
different interest groups, then they usually propofiedint transfers.

Finally, Soubeyran (2009), Krasa and Polborn (2010b, 2@ht) Jensen (2009) analyze settings
in which candidates flier in their ability to implement certain policies. In thesstimgs, competence
differentials give rise to non-UCR preferences in a natural viagll of these papers, the focus is on
the particular application, while our main interest herianderstand which general properties of voter
utility functions drive policy convergence or divergenesuilts.



3 The Model

Two candidatesj = 0,1, compete in an election. Candidates afiéice-motivated and receive utility
1 if elected, and utility O otherwise, independent of the lenpented policy. Candidat¢ has fixed
characteristicg; € C, which we also call hisype If elected, Candidatg¢ implements a policy position
aj €A

Uncertainty about voter preferences is described by a pilifyaspace 2, O, u): A statew € Q
determines voters’ preferences o¥erx A, andu is the probability distribution of these “preference
shocks”, whileD is the set of measurable events. In particularPlebe the set of preferences @nx A.
Then the preferences of votée € = {1,...,L} in statew € Q arex>! e P, .3

The timing of the game is as follows:

Stage 1 Candidateg = 0, 1 simultaneously announce policiase A. A mixed strategy by Candidate
consists of a probability distributiosr; overA.

Stage 2 Statew € Q is realized and each citizen votes for his preferred cangida abstains when he
is indifferent?

We consider two dferent objectives for the candidates, maximizing the pribibabf winning, and
maximizing the expected vote share.

Obijective 1: Probability of winning maximization.

Candidatgj wins the election if he receives more votes than his opporectase of a tie between the
candidates, each wins with probability2l LetW!(w, ag, a;) denote Candidat@s winning probability
in statew, given policiesag anda;. Formally, Wo(w, ag, a1) = ¢(v(w, @, a1)), whereé&(x < 0) = 0,
£(0) = 1/2 andé(x > 0) = 1; andv(w, ag, a1) = #{f | (o, A0) =5, (cl,al)} - #{f | (c1, &) =5 (co,ao)}.
Candidate 1's winning probability is given W(w, ag, a1) = 1 — WO(w, ag, a1).

Objective 2: Vote share maximization.

3More formally, let, be ac-algebra of measurable subset$pthen votert’s random preferences are given by a measur-
able functiont,: Q — P;. For example, ifC andA are finite therP, is finite. In this casey, is the set of all subsets &, and

measurability means that the set of all statethat are mapped into one particular preference orderingeesorable.
“4If a voter has a strict preference, then it is a weakly dontisarategy to vote for the preferred candidate. If a voter is

indifferent, he could in principle vote for any candidate or abst&i/e assume that he abstains, which is quite natural (e.g.,
in the presence of even very small voting costs), and alswalls to easily model a random number of volgis) < L by
simply by modelingL — L(w) voters as indferent between all policies, so that they will abstain no eraithat policies the

candidates choose.
SNote that it is interesting to investigate both objectiaace they lead in general tofflirent equilibria (see Patty (2005)

and Patty (2007)).



Candidate Q’s vote share in statas given by

#{5 | (co. a0) >, (c1, al)}

VO(w, a9, a1) = :
#{¢ | (c0.20) + (cr.0))

and Candidate 1’s vote sharev$(w, ag, a1) = 1 - VO(w, ag, a1).

Definition 1 1. Consider the game where candidates maximize their régpeginning probability.

(@) (ag,ay) is apure strategy Nash equilibrium if and only if

f WO(w, a0, &) du(w) > f WO(w, al, &) du(w), and f Ww, a0, a1) du(w) > f W, a0, &) du(w);

for all ag,a; € A,

(b) (ag,a1) is a strict Nash equilibrium if and only if the above inequalities are strict for all
a, # ag, and g # a.

(c) A pair of probability distributiongog, p1) on A is amixed strategy Nash equilibrium if
and only if g € arg mavavo(w, ag, a1) du(w) do1(aq) for all ag in the support ojpg, and
a1 € argmax f W(w, a9, a1) du(w) dpo(a) for all a; in the support op;.

2. To get the corresponding definitions for the game with sbtge maximization, replace %4y
and Wt by V2.

4 Convergence and Divergence of Equilibrium Policies

4.1 A General Convergence Result without Fixed Characterigcs

Our first result shows that, for arbitrary voter preferenéesandidates’ fixed characteristics coincide,
then any generic pure strategy equilibrium displays patiogvergence. Note that Theorem 1 is a char-
acterization result and does not provide conditions undecina strict Nash equilibrium exists. Indeed,
since our framework is very general, necessary atficent conditions for equilibrium existence are
hard to obtain. Nevertheless, we know that Theorem 1 is rmios as there are classes of voter pref-
erences, such as the Downsian model or the probabilistingratodel, in which a strict equilibrium is
known to exist. The main usefulness of Theorem 1 is therefwatit tells modelers that, as long as
candidates are identicaip utility functions for voters will be able to generate edgoilum divergence.

Theorem 1 Suppose thatec= c;. Then the following holds in the game with winning probaypifnaxi-
mization and the game with vote share maximization.



1. If there exists a pure strategy Nash equilibrigag, a;) with ag # a3, then(ag, ag) and(a;, a1) are
also pure strategy Nash equilibria.

2. If there exists a strict Nash equilibriufag, a1) then @ = a; and this strict Nash equilibrium is the
unique Nash equilibrium (pure or mixed).

Divergent pure strategy equilibria cannot be unique, ag s candidates’ fixed characteristics do not
differ: Whenever they exist, there is also an equilibrium witlicgaconvergence; moreover, any policy
divergence is weak in the sense that candidates do notyspriefer the particular platform they choose.
Thus, our result generalizes the convergence resultsiéarfribm the Downsian model to a setup with
multiple issues and uncertainty about preferences. In therisian model under certainty both candi-
dates choose the policy that is most preferred by the meditan. Mf the position of the median voter is
uncertain, then candidates converge on the “median méttiamjs, there is no other position that would
make a majority betterfbin a majority of states. The intuition of the median voteraitean continues to
hold for general preferences: In an equilibrium, no othesitpan can make a majority of voters bettdf o
in a majority of states. The reason is that, if such a policsitimn existed, then either candidate could
deviate to it, thereby increasing his winning probabiliyntore than 12.

Theorem 1 is related to Theorem 7.1 in Austen-Smith and B&1@35). In a setting with certainty
about the preference distribution of voters, they show ahpair of platforms &g, a;) is an equilibrium
if and only if ag anda; are both policies that cannot be blocked by a decisive emal(t.e., in the case
of plurality rule, that are Condorcet winners). In many feamorks, there is (at most) one Condorcet
winner, in which case convergence arises trivially. Howeegen if this is not the case, Theorem 1
shows that divergent equilibria can neither be strict noque.

Finally, it is quite clear that Theorem 1 cannot hold if thare more than two identical candidates.
To see this, suppose that there are three candidates, andghest one binary issue and two states of
the world; in state 0, which obtains with probability 0.6,\alters prefer position 0, and in state 1, which
obtains with probability 0.4, all voters prefer positionla this case, it is clearly a strict equilibrium that
two candidates choose position 0 and the third one choositsopal, leading to winning probabilities of
0.3 for each of the two candidates who share position 0 (assuthat voters randomize between them
in state 0), and 0.4 for the candidate in position 1 who winstéte 1. It is also obvious that,@ O) is
not an equilibrium, because (for example) the third cartdidauld deviate to 1 and increase his winning
probability from /3 in (0,0,0) to 04 in (0,0, 1).

4.2 UCR Preferences

We now turn to the more relevant case that candidates’ fixadackeristics dfer, and analyze under
which conditions there is policy convergence in those isghat candidates are free to choose. In this
section, we identify a condition on voter preferences dalleiform candidate ranking (UCR). In Sec-
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tion 4.3, we show that UCR preferences arffisient for equilibrium policies to (generically) converge,
and that they are, in a certain sense, also necessary fogrgamee results.

We start with the definition of UCR preferences. Suppose loét candidates choose the same
policy a € A. We say that a voter hasiform candidate ranking (UCRyeferences if his preferences for
the candidates are independentofor example, suppose that= A = {0, 1}. Preferences are therefore
defined on{0, 1} x {0, 1}, where the first coordinate is the candidate’s fixed charnatizand the second
one the policy issue. A UCR voter prefers@to (1, 0) if and only if he also prefers (@) to (1, 1).

Definition 2 Preferences on Cx A allow for auniform candidate ranking (UCR) if, for all cg,c; € C
and allaa’ € A,
(co, @) > (cq1, @) if and only if(cp, @) > (cp, &). 1)

Models in which candidates have no fixed characteristics, (fe standard one-dimensional Down-
sian model) automatically satisfy Definition 2. Also, a miodéh a one-dimensional policy space and
random candidate valences satisfies UCR, as does a modalneightainty about the preferred position
of the median voter (as well as valence). Likewise, votefgoemces in the probabilistic voting model
(see, e.g., Lindbeck and Weibull (1987), Lindbeck and W&{1993), Coughlin (1992)) satisfy UCR.

For example, consider a model with stochastic valence:ateat = (wg, w1), voterd's utility from
Candidate 0 is given byg — (ag — 6)?, while his utility from Candidate 1 is given by — (a; — 6)2.
Clearly, whergg = a3, the voter strictly prefers Candidate 0 if and onlwif > w1. Since this preference
is independent of the particular poliey = a;, UCR is satisfied.

Note that Definition 2 refers to pairwise comparisons of édaies (consisting of fixed and flexible
policies). Thus, whether UCR holds is a property of utilimétions and therefore independent of the
actual number of candidates. While we focus on settings iichlwiivo candidates compete against each
other, Definition 2 would remain unchanged if there are mbam two candidates. Of course, if the two
candidatesy, c; are already fixed, we carffectively restrict the sef to contain exactly these two values,
which makes it easier for preferences to satisfy UCR. Théksause (1) has to hold for all pairs of fixed
characteristics iiC, there are preferences that would fail UCR on a very genetabtfscandidate-fixed
characteristic€, but that satisfy UCR for a given specific pair of candidas; {co, ¢1}.

While UCR preferences are prevalent in the literature etlage natural circumstances in which pref-
erences violate UCR. For example, suppose that a candidated characteristics capture his compe-
tence in implementing éerent policies. Specifically, suppose that the fixed chartic is whether or
not a candidate has served in the military, while the poksye is whether or not to go to war with some
other country. It is conceivable that a voter considers #trailate who has served in the military as a
better leader for the country during a war, while preferrdng opponent with a civilian background if
there is peace. Formally, such a voter could have the preferél 1) > (0,0) > (1,0) > (0, 1), that is,
prefers most to go to war with a leader with military expecienwhile the second best option is not to go

9



to war and have a leader with civilian background, which mggabetter than both “mixed” policy vec-
tors. These preferences violate UCR, because the voteferped candidate changes from the situation
that both propose to go to war to another one in which bothgsempeace.

We now characterize the set of utility functions that repredJCR preferences.

Theorem 2 Let A and C be separable metric spaces, and let C be compaen thie following state-
ments are equivalent:

1. Rational (i.e., complete and transitive) and continfoueferences- on C x A satisfy UCR.

2. The preferences can be described by a continuous utility functiofc,&) = g(f(c),a) where
f: C - Y c Ris continuous, ang: Y x A — R is continuous and strictly monotonegre Y

We can interpref (c) as the voter’s ranking of the candidates’ fixed charadtesis— a higher value of
f(c) indicates that the voter ranks the candidate higher, sjnisestrictly monotone inf(c). Thus, a
voter’s preferences satisfy UCR if and only if there is suchriking that is independent of poliey

If the utility function is additively separable acrossandC, i.e., u(c,a) = uc(c) + ua(a), then
Theorem 2 immediately implies that preferences satisfy USEbpose, for example, th@t c R and
thatA = Hi'zlAi (i.e., there ard different issues). Thus, a candidate’s policy can be writtea as
(a1,...,a), and the “weighted issue preferences” of Krasa and Pol&#h0a), can be represented by
the additively separable utility function

[
u@.¢) = ~Acle— bl - ) Ailai - 6. @
i=1
Parameterg andA can be interpreted as ideal positions and weights that me#seirelative importance
of the fixed and selectable issues, respecti®e\nother class of preferences with additively separable
utility function are those where infierence curves are circles around an ideal p@&intvhile additive
separability guarantees that UCR holds, the following eplarahows that it is not a necessary condition.

Example 1 Letcy = 0,¢1 = 1, and assume that there is only one binary policy issueAi£.{0, 1}. The
voter's preference is (0) > (0,1) > (1,1) > (1,0). Clearly, UCR is satisfied, as Candidate 0 is always
preferred to Candidate 1. However, these preferences thenepresented by an additively separable

5Note that continuity is automatically satisfieddfandC are finite.
"Note thatY inherits its topology as well as its ordering from the reals.
8Implicitly, separability of preferences is assumed in savinternet-based political comparison programs. Fomexa

ple, smartvote.ch (a cooperation project of several Swisgetsities) collects the political positions of candigiin national
elections by asking candidates a number ofyegjuestions on fierent political issues. Voters can answer the same ques-
tions on a website (and also choose a weight for each issukeam@ngiven a list of those candidates who agree with them
most. Similar programs exist for the U.S. (hftpww.myspace.coymydebates), Germany (httfiwww.wahl-o-mat.de), Aus-

tria (http7/www.wahlkabine.g} and the Netherlands (htfpvww.stemwijzer.n).
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utility function uc(c) + ua(a) because (@) > (0, 1) would imply ua(0) > ua(1), while (3, 1) > (1,0)
would imply ua(1) > ua(0), a contradiction.m

4.3 Convergence and Divergence

The following Theorem 3 again considers the topic of consrog, but in contrast to Theorem 1, it allows
for candidates’ fixed positions toftier and focuses on the case that all voters have UCR prefarémce
a.e. realization ob € Q. Under these conditions, there is policy convergence istadlt Nash equilibria.
Moreover, if a strict Nash equilibrium exists, then it is gune.

Theorem 3 Suppose that all voters have UCR preferences for a.e. agmiz ofw € Q (¢p and g are
arbitrary, in contrast to Theorem 1). Then the following d®lin the game with winning probability
maximization and the game with vote share maximization.

1. There is policy convergence in any strict Nash equilitoriiag, a1), i.e. & = a;.

2. If there exists a strict Nash equilibrium then it is theaur@ Nash equilibrium (pure or mixed).

It is useful to discuss here the intuition for how the UCR agstion shapes Theorem 3. For com-
parison, remember that, in the case that candidates do ffiet ui fixed characteristics, the fact that a
candidate can always copy his opponent and thereby secuienang probability of 2 implies that
strict equilibria cannot befbthe diagonal. In contrast, with fierent fixed characteristics, UCR pref-
erences allow for potentially asymmetric pétigofor the two candidates. However, the key feature of
UCR preferences is that it is still true that each candidateatways secure a particular set of supporters
by copying his opponent. This feature again implies thattséquilibria cannot be f the diagonal —
reverting to the diagonal by copying the opponent is eitliieactive for Candidate O or for Candidate 1.

More formally, suppose both candidates choose the sameyoliSince voters have UCR prefer-
ences, the winning probabilities do not change if both adetdis switch t@’. This means that the entries
on the diagonal of the pagfomatrix (i.e., whereag = a;) are identical, though not necessarily equal to
1/2. Suppose, by way of contradiction, that there is a stricsiNequilibrium &g, a;), with ag # a;.
This would require that Candidate O strictly prefers hisqt&in (ag, a;) to his paydr in (a1, a1), i.e.,
the paydf that he could obtain by deviating &. Similarly, Candidate 1 strictly prefers his pdlym
(a0, a1) to his paydr in (ag, ag). However, since the candidates play a constant sum gambeapdydts
in (ag, &y) and @y, a1) are equal because of UCR, we get a contradiction.

The proof of Theorem 3 relies on the fact that candidates alagnstant-sum game in our model,
whether they care about their probability of winning or thaite share. As Zakharov (2012) has shown,
if candidates for political fiice are assumed not to be in pure conflict (i.e., their uslitis a function of
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the votes they receive do not sum up to a constant), thenypditergence may arise even if voters have
UCR preferences.

One of the very few models with an equilibrium in whickice-motivated candidates choose di-
vergent platforms is Adams and Merrill (2003). Our resutidi¢ate that this must be due to non-UCR
preferences in their model. Voters in their model have addjt separable preferences that incorporate
both a (continuous) policy issue and partisan prefereralén {o “fixed characteristics” in our terminol-
ogy). Specifically, consider the following example.

Example 2 There is one fixed characteristic, which Adams and MerrO@@) refer to as partisanship,
and a one-dimensional policy variable in ). A citizen’s type is of the formP, 8), whereP € {D, R}
denotes the partisan preference, @nthe most preferred policy. Utility of typel), 8) from Candi-
date D, x) is B— 60— x| and—|0 — x| from CandidateR, x). Similarly, type R, ) also ha® as ideal point,
but gets a utility benefit oB from the Republican candidate. However, this “utility ftion” is not a
standard utility function in the sense that it completelgatdes behavior. In particular, they assume
that citizens abstain (i) if the utility fierence between candidates is below a threshold (“abstefintio
indifference”), or (ii) if the utility from the preferred candigais below some thresholll (“abstention
from alienation”). While the model of Erikson and Romero 4@ has only the firstféect and gener-
ates equilibrium convergence, the secoffgéa may lead to (@ective) preferences violating UCR. To
see this, consider only the secorfteet, and defineféective voter preferences of a Democratic partisan
(D, 6) given policy platforms<p andxg as

D>R < B-|xp-0>—-|xg—-6landB—-|xp—8|>T
R>D < B-|xp-0<—|xg—-6land —|xg—06|>T
D~R < B-|xp-0<Tand-|xg—-0|<T

In order to have some participatioB,> T and in order for the alienation constraint to maBex T +0.5.
To see that these preferences violate UCR, consider a Datiopartisan with an ideal policy point of
0 = 0. If both candidates were to propose the same palicy xg = 0, thenD > R (i.e., the voter votes
for D). If, instead,x = 0.5 thenD ~ R, because the voter is alienated and therefore abstains, fase
preferences violate UCR =

Theorem 3 indicates that we have to focus on non-UCR prefesein order to generate policy
divergence. In fact, it is easy to find such voting games.

Example 3 There are two candidateg # cg and two policiesag, ag, whereag is interpreted as fo-
cusing spending on national security (guns), whiecorresponds to focusing on healthcare or schooling

%Since voters in Erikson and Romero (1990) and Adams and M@®@D3) only fulfill transitivity for strict preferencesur
theorems do not apply directly. However, from comparingtthe models, it is clear that the violation of UCR in Adams and
Merrill (2003) drives the divergence result.

12



(butter). Candidate 0 is knowledgeable about nationalrggdasues, while Candidate 1's expertise is
on social policies. Thus, it is reasonable to assume thed e the following types of voters:

Type G (cg, ag) > (Cs, ag) > (Cg, as) > (Cs, aG)-
Type B (g, ag) > (Cg, ac) > (Cs, ac) > (Ca. ag).

Thus, typeG voters prefer “guns” to “butter”, and also have a preferefozecompetent policy imple-
mentation, i.e., they prefer policies implemented by thedadate who has the corresponding expertise.
Type B voters prefer “butter” to “guns”, and also seek competemcpdlicy implementation. Let the
number of citizens of each type be givenig(w) andng(w), respectively, where € Q reflects uncer-
tainty about the distribution of preferences. Then the nemalb voters in state is given by

(c,ag) (ce, ap)
(Ce,a) | No(w) +Ng(w), 0 |  ng(w), Ne(w)
(Cc,a) | Ne(w), ng(w) | 0,Nng(w) + nNe(w)

Then @g, ag) is the unique Nash equilibrium and ag), (Cg, ag) are the unique equilibrium platforms
of the game with vote-share maximization. If, in additigf{w|nc(w) > Ng(w)}) > 0 andu({w|ng(w) <
ng(w)}) > 0, then (g, ag), (cg, ag) are also the equilibrium platforms of the game where catdil
maximize the winning probabilit}? m

Are UCR preferences mecessarcondition for equilibrium policy convergence? It is easyste
that no property imposed solely on citizens’ preferencesh &s UCR, can be simultaneously necessary
and stficient for policy convergence. For example, if citizens wibn-UCR preferences are never
pivotal, then the violation of UCR would not matter for eduilum convergence. The same is true if
UCR is violated for some policies that ardistiently undesirable for most voters. However, Theorem 4
shows that even if there is just one voter with arbitrary ifeR preferences, then there are always some
voting games in which everyone else has UCR preferenceshdihave a strict equilibrium with policy
divergence.

This is completely analogous to the well-known conditionsifgle-peaked preferences in a one-
dimensional policy space. If all voters have single-peapegferences, the existence of a Condorcet
winner is guaranteed. However, while a Condorcet winnerstéirexist when some voters don't have
single-peaked preferences, it is also possible to corisexamples in which only one voter violated
single-peakedness and no Condorcet winner exists.

19Note that we can easily add more voter types to Example 3 witihamediately &ecting the equilibrium. Even adding an
arbitrary number of partisans (who vote for one candidaspective of the candidate’s policy) presen&s &), (Cs, ag) as
the unique Nash equilibrium, as long as tygpandB voters remain pivotal with positive probability. If the frability that type
G andB voters are pivotal is zero, then any combination of straet an equilibrium of the game where candidates maximize
their probability of winning.
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Theorem 4 Let > be some arbitrary non-UCR preferences orx@ and suppose that A is finite. Then
there exists a voting game with the following property:

1. One citizen has preferencesand all other citizens have UCR preferences.

2. There exists a pure strategy Nash equilibrium with palisergence, for both winning probability
and vote share maximization. Furthermore, the equilibrignstrict, and there is no other Nash
equilibrium in either pure or mixed strategies.

The detailed construction of the voting games is in the poddfheorem 4 in the Appendix, but we
provide an intuition based on a (generalizable) example hewhich candidates maximize their vote
share. Consider an individual whose preferences violatR (€ actionsa anda’. There are just a few
possibilities how candidate choices of policesr & translate into votes for the candidates. Since the
preferences violate UCR, the diagonal elements cannot ibe.s&or example, our non-UCR voter's
voting behavior for actions anda’ of the candidates could be the one summarized in Table 1a. The
numbers in this table denote the votes for the two candidfdegxample, “10” denotes that the non-
UCR voter votes for Candidate O.

(c1,8) (c1. &) (c1,a) (c1, &) (c1,a) (c1, &)
(Cp,a) | 1,0 0,1 (Co, @) 11 1.5,0.5 (Co, @) 2,1 15,15
(o, @) | 1,0 | 0,1 (co,@) | 0.5,1.5 11 (co,@) | 1.5,1.5 1,2
(a) Non-UCR voter (b) UCR voters (c) All voters

Table 1: Construction of divergence equilibria with one #@R voter

Of course A may consist of more than just the two policegs®’ and the non-UCR voter may strictly
prefer some other policies, in which case the violation ofRJiGr a anda’ may be irrelevant. In order
to makea anda’ relevant, we introduce two additional voters who prefemda’ to all other policies.
Suppose one voter prefers Candidate 0 while the other pr€@ndidate 1 if both candidates choose the
same policy. UCR does not impose any restriction on the ehaficff-diagonal elements. Allowing for
some uncertainty about the state of the world, we can genthraivote shares given in Table 1b from the
two UCR-voters. Note that, if candidates were only to playtfe support of the two UCR-voters, then
the unique Nash equilibriurra(a) is on the diagonal, and therefore involves policy convecge

Now add all three voters together (Table 1c¢). Note that, auitHoss, we can exclude actions other
thana anda’ since the two UCR voters rank those belaanda’.!* Now a, & is a strict and unique Nash
equilibrium. We provide a similar construction of the gamighwinning-probability maximization.

The example is robust in the sense that we could change tlergmees of the two UCR-voters
somewhat and still obtain the same result. What mattersinsapity that the policies for which UCR

UThus, a candidate who were to propose another policy wouldya lose against one who proposes either & .
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is violated for agent 1 are among the most preferred policfesuficiently many of the UCR-voters
so that candidates want to use them. Second, if the candiddigctive is to maximize their winning
probability, then the non-UCR voter must be pivotal for thecgon outcome with positive probability.
These are the crucial aspects of the construction of the geamwhile everything else can easily be
changed withoutféecting the conclusion that the unique equilibrium featutigergence.

5 A Generalized Probabilistic Voting Model

Another way of showing that UCR is “close” to a necessary o for policy convergence is to
restrict attention to a parametrized class of prefererared,prove that UCR is necessary anffisient

for convergence in voting games when voters have prefesemithin this class. We choose this approach
in this section.

5.1 The Classic Model with Microfoundation

In the classical probabilistic voting model (PVM), groupe éentified as voters with the same “eco-
nomic” preferences. However, voters within the same groay wote for diferent candidates because
of what Persson and Tabellini (2000), p. 52 refer to as “idgal They write that “one way to motivate

[ideology] is to think about a second policy dimension, ogbnal to fiscal policy, in which candidates
cannot make credible commitments, but set an optimal palftsr the election according to their ide-
ology.” Rather than modeling the second policy dimensioplieitly, they operationalize this idea by

adding an additive ideology shock to the economic prefagnc

Our objective here is to setup a model that takes this notfom fixed second policy dimension
seriously. We start with the special case of Euclidean peefses in a two-dimensional policy space, i.e.,
circular indiference curves. In the following section, we consider a mimdehich indifference curves
can take any elliptical form, which captures the notion ahptementarity between the two dimensions.

Suppose that voters have one of finitely many policy ideahtsd@l;, j = 1,...,J. Let1; be the
fraction of voters with ideal poing;. We assume that is deterministic. Voters with policy preference
0; are diterentiated with respect to their ideal point on the fixedasstihe distribution of ideal points
on fixed issuesy, for voters in groupj depends on state, and is given by the cdF;(6 — w) with
corresponding pdf;(6 —w). That is, the distribution of ideal points on the fixed issuay difer between
groups, but the shift parameteraffects the preferences of all voters in a uniform way (i.e.gaéi value
of w effectively shifts the fixed-issue ideal points of all voterghe right). As in the general mode,
is distributed according to a probability distributignFurthermore, remember thatcapturesall of the
uncertainty in our model: Givew, we know what the actual distribution of voter ideal poirgs for
example, ifw = 0.5, thenF (6 — 0.5) measures thesalized proportionof voters whose fixed issue ideal
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point is belows (i.e., there is no two-stage uncertainty in the sense thitidual voters’ ideal points
would bedrawnfrom f;(6 — 0.5) in this example).

To save on space, we focus in this section on the case thaatitkdates’ objective is to maximize
their respective probability of winning; however, with mimadaptations, analogous results also hold for
voteshare maximizing candidates.

We use the following assumption in the current and the fahgwsubsection.

Assumption 1
fj is continuously dferentiable.
w has a distribution with strictly positive density on its popt, which is a non-empty interval.

The median and the mode of the distribution of eégcls obtained atw. Equivalently, F(0) = 0.5 and
f/(0)=0, forall j = 1,...,312

The first two items are fairly innocuous technical assurm@ioThe third one, which assumes that the
median ideology shock is the same for all groups, is made dawvenience, in particular for stating
second order conditions. Since our results are not knifeedses, it is clear that this condition could
be relaxed at the expense of more cumbersome algebra. Alsoilrat the assumption is weaker than
symmetry offj;.

If preferences are Euclidean with utility functiogg(a, ) = —(5 - ¢) — (0 — a)?, then typej with ideal
point ¢ on the fixed issue prefers Candidate 0 to Candidate 1 if andifonl

(6) = co)? + (6 — a0)* < (6 — c1)* + (6 — an)*. (3
(3) is equivalent to
1 (a1 — ao)(a1 + a0 — 20j)
6J<§ Co+C1+ s . 4)

Remember that a higher value @fshifts the distribution o6 to the right. For a given value @, the
fraction of voters who support Candidate 0 is given by

J
1
/lij(—
2,4F1(3

Clearly, (5) is continuous and decreasingvand goes to 0 faw — oo, while it goes to 1 fow — —co.
Thus, for any pair of policiesa, a1), there exists a critical value*(ag, a1) such that the election ends
in atie if w = w*(ag, a1). If w < w* then Candidate 0's win because his vote share strictly esc8@%.
The reverse is true, i.e., Candidate 1 wingy it w*.

_ — 20
Co+Cyp + (@ aO)éfl_J;an 01)] - cu) : (5)

?Remember that the cdf in stateis F(6 — w).
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Furthermore, it must be true that each candidate maximimegole share in the critical statg’. If
this was not true for, say, Candidate 0, then he could simmulsebse his vote share in stateand thus
win for sure in all states in a neighborhood ab*; moreover, since Candidate 0 also wins for all lower
states, his winning probability must increase by this desa

Thus, formally, Candidate 0 solves

(a1 — ao)(ay + a0 — 291)] _ w*) ©)

J
1

max » AjFj{z|Co+cC1+

2 ,Z:; ! J(2[ ! C1 - Co

while Candidate 1 solves

(a1 — ao)(as + & - 29,-)] ~ w*) @)

J
min » AiF; E Co+C1+
i iTi -G

=1 2

wherew* is the realization at which the candidates’ winning prolitds are 0.5, i.e.,

J
1 (u-a)(a+ao—-20))| | _
J.Z:;/lij(E Co+Cp + 1 —Co —w | =05 (8)
whereag anda; solve (6) and (7), respectively.
The first order conditions of (6) and (7) are
J
1 (al—ao)(a1+ao—29,-)] )Hj—ao
Aifil=z|co+c1+ —w|——=0; 9
; JJ(ZCO 1 - Co - Co ()]
J
1 (al—ao)(a1+ao—29,-)] )Hj—al
- > Aifi|=z|co+cr + —w'|——=0. 10
JZ:; “(2[ ! c1—Co c1 - Co (10)
Adding (9) and (10) gives
J
a - ao 1 (al—ao)(a1+ao—26'j)] )
Ajfi|z|co+cC1+ -w'| =0,
Cl_%; ”(260 ! c1- Co
which implies that any solution has the property that a;. Substitutingag = a; into (8) implies
J
C
Z/lij(CO; 1—w*)=0.5, (11)
=1

By Assumption 1,F;(0) = 0.5, so that equation (11) implies* = (co + €1)/2. This,ap = a; and (9)
imply that

J
>4 j(0)@; - a) = 0, (12)
j=1

Clearly, there exists a unique valueaothat solves (12).
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The second order conditions of (6) and (7) are
J 2
0 —
Z (( j —ao)” f'(- ]< 0.
C— (‘)
0; — ap)?
Z (( ) DA ]< 0.
C— (‘)
At ag = a; the second order conditions reduce to the single condition

J 2
(9; — ag)” ' (0)
JZ/l ( oo TO 1)<0. (13)

Since f’(0) = 0, condition (13) is satisfied. Thusg = a; is a local, strict equilibrium. (A pair of
strategies dp, a1) is alocal equilibriumif there exist set#y and A; such thatag € int(Ag) anda; €
int(A1), and o, &) is a Nash equilibrium of the game in which candidates areicesd to choose from
Ag andAy, respectively.)

Suficient conditions for global optimality arefticult to state, as the left hand side of (13) can be
positive if f’ is evaluated dficiently far away from zero; see Banks and Duggan (2005) foereal
treatment of existence problems in the classical protsdigilivoting model. However, if we restriet
to be from a sfficiently small interval §, o] that containsag = a;, then the local equilibrium that we
identified is also guaranteed to be a global equilibrium i tbstricted game. Theorem 3 therefore
implies (corresponding to standard results for the stahB&M with additive ideology shocks) thag,

a is the unique Nash equilibrium, pure or mixed, of the restdagyame.

Theorem 5 Suppose that Assumption 1 is satisfied. There exists a pategst local Nash equilibrium
(formally, there existe;, < @ < «; such that g, & is a Nash equilibrium if the candidates’ strategy
spaces are given by, ai], i = 0,1.) Moreover, there is policy convergencep & a; in this local
Nash equilibrium. Furthermore, the equilibrium is the wnglocal pure strategy Nash equilibrium in
the original (unrestricted) game.

As in the standard PVM, the intervals;[ ;] becomes larger (or global), if the type distribution is mor
spread out, i.e., if’ stays small if we move away from zero. Of coursef’ifs O (i.e., if the distribution
is uniform) then the equilibrium is always global.

5.2 Elliptical Preferences

We now consider preferences for which ifidrence curves are ellipses rather than circles. Intutivel
indifference curves that are circles capture preferences wheidehl policya is independent of the
fixed characteristic. In contrast, consider, for example, elliptical ifidrence curves for which the
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major axis is the 45 degree line. This corresponds to a mtuathere the fixed characteristic and the
policy are complements in the following sense: The votet&al policya is the higher, the higher is the
candidate’s fixed characteristic.

For example, consider the following situation: The fixedrelateristic measures the general attitude
of the candidate towards cooperation with foreign govemisién solving international problems. A
candidate who favors broad international cooperation amdensus building in international organiza-
tions would be denoted as (say) a low type on this dimensitiiieva candidate who prefers a unilateral
approach and does not care much about the internationabopiould be a high type. Candidates are
fixed to their respective (ffierent) positions in that dimension. This assumption atedre reasonable,
as it is probably very diicult to credibly commit to a particular foreign policy “dttde”.

There is a second dimension that is more concrete and whedidesées can commit to a particular
position. For concreteness, think of this dimension as dfiergse budget. Itis quite plausible that the type
of the executive (i.e., the position of a candidate in tha @imension) influences a voter’s preferences
over policy in the second dimension; for example, a voter prajer that a more assertive candidate has
a higher (or lower) defense budget than a more cooperatpe tin the first case, we would say that
characteristic and policy are complements, in the secosgl, they are substitutes. Both cases imply that
a voter’s indiference curves are not circles but rather could be capturedlipges whose major axis is
not exactly horizontal or verticaP

Before we proceed, it is useful to conceptuallyfelientiate between the shape of the fifedence
curves and correlation in the distribution of ideal poira far, we have argued that it is plausible that
a single voter’s preferences over fixed characteristicsfl@xible policies display complementarity or
substitutability. This ffect influences the shape of ifidirence curves. Conceptuallyfidirent from this
is correlation in the distribution of ideal points in bothmdinsions. For example, it may be the case that
many voters who have a preference for “tough-talking” etiges also have, on average, a higher ideal
point on the defense budget. Thus, if we were to plot votealigeints in ac — a-diagram, these ideal
points might display positive correlation. Whether or riwgre is correlation in ideal points does not
affect our theory much, so we do not need to take a position omthastion.

Consider the preferences illustrated in Figure 1 wherewmegarameterg; andk, determine the
shape of the indierence curves{ measures the ratio of the two axes, whilds the angle of rotation).

13As a related example where complementarity between a caiedidtype and the policy choice is plausible, consider
the following example: Suppose candidateediwith respect to their beliefs about the possibility ofabititating criminal
convicts. While a lowc candidate believes that rehabilitation is oftefeetive, a highc candidate believes that it does not.
Consequently, if the tough politician is in power, crimmafill remain more or less unreformed (whether or not refitakiibn
is in principle possible). Suppose thtmtorresponds to the amount of money spent on building andtaiaing prisons (not
including any rehabilitation expenses). Then, independétheir ideal point, voters would want the candidate wheslaot
believe in rehabilitation to build more prisons, since absehabilitation €orts, this is the better choice than releasing prisoners
early because of a lack of space in prisons. In contrasteiéiecutive believes in and funds rehabilitation prograadditional
prison space is less useful, and the voter would prefer arlawe
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Clearly, any preferences with elliptical iffBrence curves can be represented by the ideal pHi)t &,
andx,. In particular, letting«; = 1 produces standard Euclidean preferences, reducing tdelnmothe
standard PVM.

More formally, let

M={ . K2] (14)

—K1k2 K1

For x € [0, 1]? define the normix|lm = [IMxlo, where]| - ||, denotes the Euclidean norm. Lét{) be a
voter’s ideal point. Then

(c,a) =% (¢, &) ifand only if ||(c,a) — (5, 6)lm < I(C, &) — (6, 6)lIm. (15)

It is easy to check that infierence curves are of the form

1+ k%k2 1-«2))(c-6) —
(c—6,a-06) " Klkg K2(2 K21) = U (16)
ko(l—«7)  ki+k5 Jla—é6

The eigenvectors of the matrix in (16) arexg, 1) and (1«2) with associated eigenvalue%(l + K%) and
1+ K%. Thus, as indicated in Figure 1 irftéirence curves are elliptical, with the main axes given by the
above eigenvectors, and the ratio of the length of the axesuned by;.

If the major axis has positive slope such as in the left paheh a voter’s optimal level & increases
with ¢, and we say that anda are complements. If, in contrast, the slope of the major iaxiegative,

we say that anda are substitutes. Formally, if(c,a) = —||(c,a) — (6, 9)||§/I represents the preferences,
then u(c.a)
ou(c, a 2
el -2(1- «7k2. a7

Forx; > 1 andk, > 0 as in the graph, the sign of the cross derivative is posiitiicating complements.

Figure 1: Elliptical Preferences and Violation of UCR
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We next prove that UCR is violated for these preferences. vitlation of UCR can most easily
be seen in the right panel of Figure 1 (and the argument canmlglee formalized). If both candidates
select policya then the voter prefers Candidate 0. If, instead, both catelsdselect policy’ then
the voter prefers Candidate 1. The only elliptical prefeemnthat satisfy UCR are those for which the
major or minor axis is horizontal, i.e., whekg = 0. Such preferences are given by a utility function
u(c, a) = —k?(c — 6)% — (a— 6)2. In this caseuy(c, a) > u(c’, a) if and only if u(c, &) > u(c’, &).

Directly analyzing the voting game with elliptical irftkrence curves would be very complicated.
Thus, we transform the policy space such that preferenaaseeEuclidean (in the transformed model)
and thus satisfy UCR. Theorem 3 can then be used to identifsilple equilibria and to prove uniqueness
of equilibrium.

We now use Figure 2 to explain this procedure. The detailaétienaatical arguments can be found in
the Appendix. The top left panel of Figure 2 depicts the oadjimodel. In the standard PVM, individuals
with the same are interpreted as a “group” that has the same “economietasts (i.e., ideal value of
policy). Members of the same groupffdir only in their “ideological” preferences captured dyi.e.,
their ideal value of the fixed position). In PVMs, it is stamtléo consider finitely many “groups” (each
with a continuous, possibly group-specific distributionidgology), and we adopt the same approach.
In Figure 2, there are three “groups” with policy ideal peift, 6, andés, and the indference curves
of one particular type with a policy ideal point 8. We apply a linear transformation (given by matrix
M in (14) above) to the top left panel. As indicated, thendy-axes coincide with the directions of the
major and minor axes of the ellipses. We apply a rotationicatdd by the curved clockwise arrow, and
at the same time we stretch along traxis as indicated by the straight arrow pointing northwestl
indifference curves become circles. The result of applyhgs depicted in the top right-panel. Note
that thex andy-axes are now horizontal and vertical, while the locus oévtgpes as well as the set of
feasible policy are skew and no longer form a right angledhse of the stretching).

It is more convenient to analyze the model in the two posi#tidapicted in the middle panels. Both
are obtained by applying rotations to the top right paneltheamiddle left panel, the candidates’ sets
of feasible policies are vertical lines (and the ifigience curves are circles and therefore satisfy UCR).
As a consequence, Theorem 3 applies that in any strict Nashbeigm equilibrium policies must be
identical, i.e.,ap = a;. If an equilibrium exists, then second order conditionsrgotee strictness, just
like in the standard PVM. Thus, if an equilibrium exists, iishalso be unique.

Existence can be shown most easily using the right-middielpd his corresponds to the PVM from
the previous section, except that the candidates’ feapitiley lines are skew. As indicated in the graph,
the slope of the policy lines is given byA, where

ko(l— K%)

1/1+/<§/<§

Note thatB has exactly the opposite sign of (17). Thus; @nda are complements as in Figure 2, then
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Figure 2: Transforming Elliptical Preferences to Euclid€aeferences and Equilibrium

B<0.

If the main axes of the ellipses in the original mode are lomtial or vertical, i.e., ik, = 0, or if
indifference curves are circles at the outset, kg5 1, theng = 0. In this case, the two middle panels
are identical, and as a consequerg&es ag, i.e., there is policy convergence.

Now return to the case @f# 0. As we rotate the graph from the middle left panel to the eididht
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panel, the conditiomy = a; becomes

8 =8 - (€ - Co), (19)

B
p?+1
where the tilde above each parameter indicates that catedirare with respect to the axis in the middle
right panel. Equation (19) and Figure 2 imgly # &; (note that Theorem 3 does not apply in the middle
right panel, since the candidates’ feasible policy linesskew).

To determine the necessary andfsient conditions for equilibrium we proceed as in the prasio
section, except that we need to adjust for the fact that thsitite policy lines are skew. The resulting
first order conditions are

J ~ ~ - ~ ~
0 —
gt — e - §+(1+52)6’f?°]=0; (20)
=1 2,/1+K%K% L 1~ Co
J ~ ~ - ~ ~
C 0 —a
Za,-f,- _Nra ‘/§3+(1+52)e]f~1]:0' (1)
=1 2,/1+K%K§ L 1~ Co

The second order conditions, detailed in (54) and (55) atkeoform

S Ti(€0,C1,80,80,60) ()
;A’(Z(lwzxel—eow(al—ao) ORRAG

whererT; is a function of the indicated variables, and the candidlated, 1. One can check that, at the
solution of the first-order conditions;(-) = 0. Hence, the second-order conditions are satisfied, and we
have again at least a local equilibrium.

Finally, we transform the policy space back into its oridiftam. This process is illustrated in the
bottom panel of Figure 2. After the transformation, pokcgill differ. The line separating supporters
for candidates 0 and 1 is vertical as in the standard modetalRihatw* is determined such that the
winning probabilities are 0.5. After the transformatiolne ttondition is identical to (11) in the previous
section, and henag* = (cg + ¢1)/2. The first order conditions (20) and (21) change to

J 1+ B2k1(L + £2) 0 —
Zﬂjfj(o)[/—3+( b L A (22)
= 2 1+ kik5 C1—Co
J 1+ BAk1(1+#2) 0 — a
24 fj(o)[-é+( Gl e R (23)
= 2 1+ kK5 C1—Co
Condition (19) changes to
B + k2k3)
a-a=- L2 (c1 - Co)s (24)

1+ 2L+ 3)
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Thus, if8 < 0, which is the case of complementarity between fixed chargtits and policy depicted in
Figure 2, theray < a; as the right-hand side of (24) is positive in the case. Ilfigad,8 > 0 then fixed
characteristics and policy are substitutes, and a;.

The arithmetic average = (ap + a1)/2 of policiesag anda; has no direct substantive significance in
our model (in particular, it is not thexpectegolicy, as the candidates’ winning probabilities are usual
different). However, we can usgo show uniqueness of local equilibria as follows. Add et (22)
and (23) to get

J 2 2 a
o[22 08
j=1 172
Since the cofficient of flj__fo is strictly positive, (25) simplifies to
J
> 4ii(0)6; - 8) =0, (26)
=1

which is identical to (12) (replacingy by a). Thus,ais exactly the same as the equilibrium policy in a
Euclidean model where = 1 ork, = 0.14

We now summarize our results. It should be noted that thenegents for existence in Theorem 6
mirror those in Theorem 5 and thus correspond to those intémelard PVM.

Theorem 6 Suppose that Assumption 1 is satisfied and that preferemeegiveen by(15). Then there
existse; < & < «; such that(ag, a1) is a Nash equilibrium if the candidates’ strategy spacesgiven by
[;,ai], i = 0,1. Equilibrium policies are given b§24). There is policy divergence, i.eg & az, unless
indifference curves are circles or the major axis is horizontal ertical. Moreover, there does not exist
any other local pure strategy Nash equilibrium.

5.3 General Elliptical Preferences

The results of the previous section can be generalized toabe where botll and A are multidimen-
sional. In particular, suppose that= Rk andA = R™, and letn = k + m. As above, we consider a finite
collection of group®; € R™, j = 1,...,K. For each group, there is a cumulative distributiof;(d) on
C.

If preferences are Euclidean, then a voter with ideal pwsif, 6;) € R" prefers Candidate O to
Candidate 1 if|(6, ;) — (co, ag)ll2 < 11(6j,6;) — (c1, a)ll2, where €i, &) € R" is Candidatd’s position
(including the fixed characteristics). This condition, efhgeneralizes (4), can be rewritten as

m

K Kk
> 6ji(eni - coi) < % D (@51 - a0i)? - 01 - 200)?) + > (S - &) (27)
i=1 i=1

i=1

Mn fact, a'is uniquely determined, and this fact can be used to providel@rnative proof for uniqueness of a local
equilibrium.
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Let If,- be the distribution oE!‘Zl dji(cLi — Coj). Then Candidate O’s vote share in states

J m
Z AjF; [% lZ((gj,i —agj)” - (0 — a0;)?) +
=1 i1

which is the analogue of (5). Candidate 0 choages A to maximize (28), while Candidate 1 chooses
a; € Ato minimize it. By arguments analogous to those in Sectidnd.= a; in the local equilibrium.

(¢ - )

- wJ , (28)

k
i=1

In order to generalize this model to elliptical preferendesO be an arbitrary orthogonad x n-
matrix, and letD be ann x n-diagonal matrix with diagonal entries > 0,i = 1,...,n. LetM =D - O.
Then, as in Section 5.2, define the nofiwmiiy = [IMX|lo. A voter with ideal point §, 8) now prefers
Candidate 0 to Candidate 1, 6;) — (Co, ao)llm < [1(6j, 8j) — (C1, a1)lIm.

Let < X,y > be the inner product of two vectorsandy. For arbitraryz € R" we get
1212, = IMZ|3 =< Mz Mz>=<D-0zD-0z>=<z(D-0)'-D-Oz>

(29)
=<z0'"-D''D-0z>=<z01.D?.0z>=201.D?. 0z

Note thatO' = O~! becauseO is orthogonal, and' = D sinceD is a diagonal matrix. Thush =
O1.D?2.0is a self-adjoint matrix. The eigenvalues are givendﬁy the squares of the diagonal
elements oD, and the eigenvectors are given ®y'e, whereg is theith unit vector. To see this, note
thatA-O~le = O71.D?%q = O'd?g = d’Ole.

Thus, the quadratic form (29) describes a utility functioithvelliptical indifference contours in a
multidimensional space. The directions of the main axegyien by the above eigenvectors, and the
length of the axes are proportional to the eigenvalues, &eation 5.2. Again, we can apply matrix
M = D - O to transform the elliptical preferences into Euclideanfgnences® The set of feasible
policies of candidates 0 and 1 are given by the parallel lines

Lo:{M(j]|aeRm},andL1:{M(C;]|aeRm}.

Since preferences are Euclidean and therefore UCR, thkdqadibrium consists of pointg € L;j such
thatz — 7 is orthogonal td_o andL; (see Figure 2).

In order for a vectoix to be orthogonal td.; andL,, 0 =< M(g),x S=< (g) O 1. Dx >, for all
a € R™, which impliesx = D1 - O(g), for somec € RX. Thus, the equilibrium policieag anda; must
satisfyM(2) + D1 O(§) = M(Z), which implies

) [5)-oonof
a1 ag 0

15To generate formula (14) from Section 5.2 usD@ndO, simply define

1
D= 1+K§(

0 1 1 K2
andO = .
0 Kl) ’1+K§ (—Kz 1)
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Generalizing the argument from Section 5.2, for preferenode UCR, there are two possibilities: First,
the indiference curves can be circles (balls), which happens Whinthe identity matrixl, in which
caseO™1-D72.0 = |. Second, the main axes of the ellipses coincide with thedioate axes, in which
caseO™1. D™2. Ois a diagonal matrix. In both casesz ¢; — ¢y andag = aj.

For generaD andD, howeverO~*- D2 O(§) will no longer be in the linear subspatfe, O)ic € R¥}
of R™, and as a consequenag+ ay, i.€., we have policy divergence whenever preferencesaird @R.

Existence of local equilibria follows along the same linssirmthe two-dimensional case, i.e., we
must ensure that the density functionfofs sufficiently spread out (i.e., its derivative is not too large).

5.4 Comparison of the Classic and the General Spatial Models

One of the main points of interest of the standard PVM is teweine which features of the distribution
of voter preferences influence the equilibrium policy. Thatcal finding of the PVM is that the equilib-
rium policy maximizes a weighted sum of the voters’ econofinéc, non ideological) utilities:(6; —a)?,
where the weights of groupin the maximization problem is determined both by the gramp &;, and

by how many members of groupcan be moved easily, which is determined fpf0). The same deter-
minants influence equilibrium policy in the general spatmdel. In particular, policy solves exactly
the same optimization problem, and existence of equilibraan be proved along the same lines as in
the standard model (once the setting is transformed asieggdlan the previous section).

The key diference between the classical and the general spatial nisdeéd, in the classical model,
both candidates solve the same optimization problem arsdtitigir equilibrium policies coincide. In con-
trast, the optimization problems of the two candidaté&divith general preferences, resulting in policy
divergence. The extent of policy divergence increasesérethante dference between candidates. In
practice, the ex-ante filerences between candidates may increase if parties arepolarized on the
dimension captured by the fixed characteristic]n contrast, the dierence between candidates’ fixed
characteristics are irrelevant for policy choice in thend&rd model.

The model with general elliptical preferences also ingisanother aspect in which the standard
PVM produces special results. Consider tiffte@ of a change in the voter preference distribution over
the fixed characteristic, say, an ideology shifuirthat favors the Democratic candidate. In a standard
PVM, this shift does not féect the equilibrium policies that both candidates choosel @nce both
choose the same position, it also does ried the expected policy). The onlyfect of a change in
the electorate’s distribution of ideologies is a changehia winning probabilities of the Democratic
and Republican candidates. In contrast, whenfiiatince curves are elliptical, then a change in the
ideological distribution of the electorate alsbezts the expected flexible policy.

26



6 Conclusion

In this paper, we develop a model of candidate competitiahithmore general than the previous liter-
ature on this subject, as we allow for voters to care about that candidates’ fixed characteristics and
their chosen policy platforms in an arbitrary way. The fraraek thus contains all existing frameworks
of candidate competition — such as the spatial model or theahilistic voting model — as special
cases. Also, by interpreting some “core convictions” of thedidates as fixed characteristics, while
candidates can freely choose their positions on other sssug model provides a bridge between the
classical Downsian model in which candidates can choose fifeform without any restrictions, and
the citizen candidate model in which candidates cannot dbtorany policy that is not their ideal policy.

The main contribution of the model is twofold. First, it enleas our understanding of what drives
certain features of equilibrium in existing models of caladé competition, notably policy convergence.
Specifically, we show that just assuming that candidatesoffige-motivated and compete with each
other does not, by itself, produce policy convergence. &athis conclusion follows from the interplay
of office motivation and a certain “independence” of fixed charaties and flexible policy positions
in the voters’ utility functions. We formalize this form ofridependence” by identifying the class of
UCR preferences for which equilibrium policy convergendses even when candidatedfdr in fixed
characteristics (Theorem 3). Conversely, Theorem 4 shbatsliiCR preferences are also, in a certain
sense, necessary for convergence: Even if only one voterdrablCR preferences, there exists a voting
game in which the unique and strict Nash equilibrium featyrelicy divergence.

For the most general setup, we obtain characterizatiorlitsest they tell us how an equilibrium
looks like or cannot look likef it exists Since our model contains a very general class of models,
including some for which no pure strategy equilibrium exigt is dfectively impossible to identify
necessary and fiicient conditions that guarantee existence of a pure syrategt equilibrium within
the general framework. Nevertheless, we know from previtegature that an equilibrium exists for
several subclasses such as the one-dimensional spatial aratithe probabilistic voting model. Thus,
our characterization results are not vacuous, and they uglp understanavhy policy convergence
obtains in these models.

The second major contribution of our paper is to identify rateriesting class of models in which a
candidate’s competence in a policy ardteets the voter’s preferred policy from the candidate, which
yields non-UCR preferences in a natural way. The model tiegingsent captures the notions of comple-
mentarity between fixed and flexible positions, and is a gdization of the probabilistic voting model.
The model is essentially as tractable as the probabiligitihg model in that there is (at least under
certain additional, relatively mild conditions) a uniguedastrict Nash equilibrium that can easily be
characterized. However, we show that the equilibrium ofghme between the candidates features pol-
icy convergencenly in the special case that is the PVM, while generically, thempolicy divergence in
equilibrium. Also, comparative staticffects (i.e., which primitives influence equilibrium policlaice,
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and which ones do not) fller substantially between the generalized model and the PVM.

Our results, in particular for the class of models where ngoeave non-UCR preferences, open sev-
eral interesting avenues for future research. First, ondaaus more closely on particular applications,
such as we do in Krasa and Polborn (2010b), where we formtizeotion of issue-ownership, first
informally formulated by Petrocik (1996) in the politicatience literature. Specifically, we consider a
setting in which the candidatesfidir in their ability to produce two public goods (say, cetgEgibus,
one candidate has an advantage in supplying national seauhile his opponent is better in dealing
with the economy) and can propose how to allocate the budgbese two areas. Since the candidates’
production levels of the two goods will generally befdient even if they propose the same financial
budget allocation, it is easy to see that the implied votefgsences violate UCR.

Second, one can analyze the question of candidate seléctimore detail. In the present paper,
candidates are exogenously endowed with certain fixed ctegistics. It may be interesting to add a
prior stage to the game where candidates are chosen byspaniietheir members from two, possibly
distinct, sets of available candidates. Interesting guesinclude how party members, who arguably are
primarily interested in policy outcomes rather than in vitligper se, choose among potential candidates
knowing that these candidates will then go on and chooseieypiolr the general election in a way to
maximize their respective probability of winning.
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7 Appendix

Proof of Theorem 1. If ag = aj, thency = ¢; and reflexivity of preferences imply that all voters are
indifferent between the candidates. Thus, the winning prohabilits well as votes shares arb.(OLet
(a0, a1) be a Nash equilibrium. If Candidajés paydt were strictly less than 0.5 in this equilibrium, then
Candidatej could increase the paffdo 0.5 by using the same policy as the other agent. However, since
W(w, a0, a1) = 1 - WO(w, a0, a) this implies [ W (w, a0, 81) du(w) = 0.5, i.e., in equilibrium &, ay)
each candidate’s winning probability is 0.5. The same arprholds for the vote shares (simply replace
W by V).

We now prove thatdj, a;) is Nash equilibrium. Suppose by way of contradiction thetré exists
a deviationa; that makes Candidaiestrictly better ¢f. If i = 0 then Candidate 0 would have usaf ~
againsia; thereby increasing his paffpresulting in a winning probability that is strictly greatban 0.5.
This contradicts the assumption thag,(@1) is a Nash equilibrium (as the candidates’ winning prolighbil
in (ag, a1) is 0.5). Thus, we can assume that 1, i.e.,a; played againss; results in a ex-ante winning
probability that is strictly greater than 0.5. Howeway= c; implies thatW®(w, ag, a1) = W(w, ay, ag).
Thus, 05 < [W(w, a1, &) du(w) = [ WO(w, &, a1) du(w) < 0.5, where the last inequality follows since
(ag, a1) is a Nash equilibrium with winning probabilities 0.5. Thientradiction proves thag{, a;) is
a Nash equilibrium. Similarly, it follows thai§, ag) is a Nash equilibrium. Again, the same argument
applies to votes share maximization.

Now suppose thag, a;) is a strict Nash equilibrium. &y # a; then the previous argument implies
that (@, ap) is also a Nash equilibrium resulting in the same winningoghility, which contradicts the
assumption thatag, a;) is strict. Thusay = a; = a. Suppose by way of contradiction that there exists
another pure strategy Nash equilibriuai, @), wherea’ # a (because of the first part of the proof we
can assume that both candidates use the same strategyp tBénequilibrium 4, a) is strict we get
05 = [Wo(w,a a)du(w) > [WO(w,a,a)du(w). Thus,W° + W! = 1 implies [ W(w, &, @) du(w) >
0.5. Hence, &, &) is not a Nash equilibrium since there exists a profitabléadion for Candidate 1, a
contradiction. The same contradiction obtains for voteesihaaximization.

Finally, suppose that there exists a mixed strategy edquiiin  Without loss of generality we can
assume that Candidate 0 mixes with strictly positive prdltgbThe prove also works the same way of
vote-share maximization. The argument in the previousgrapd implies thale(w, a,a) du(w) > 0.5
for all a € A, and that the inequality is strict far# a. Similarly, f\/\/o(a), a,a) du(w) > 0.5forallae A.
The first inequality and the fact that Candidate 0 mixes intipht by choosin@; = awith probability 1,
Candidate 1 gets a winning probability that is strictly geedhan 0.5. The second inequality implies that
Candidate 0's winning probability must be at least 0.5. Tlis winning probabilities add to a number
strictly greater than 1, a contradiction. Hence, there da¢®xist a mixed strategy equilibriura
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Proof of Theorem 2. We start by proving that statement 2 implies statement 1ceSinandg are
continuous, the implied preferences are continuous. Iramsrto prove that UCR holds. Let,p) >
(c,b). Theng(f(c),b) > g(f(c'),b). Sinceg is strictly monotone in the first argument this implies
f(c) = f(c’). Again, strict monotonicity implieg(f(c),b") > g(f(c’),b’), which implies ¢, b") > (¢, b’),
i.e., UCR holds.

We now prove that statement 1 implies statement 2. Definemmetes-C on C as follows:c >C ¢’
if there existsa € A with (c,a) > (c¢/,a). Note that these preferences are well defined. In particula
the ability to uniformly rank candidates in stateimplies that €, a’) > (¢, &) for anya’ € A. Further
preferencesC are complete since are complete and therefore eitherd) > (¢, a) or (¢, a) > (c, a)
must be satisfied. In the first case-=C ¢’ while in the second casg >C c. Transitivity of =€ follows
also immediately from transitivity of. In particular, suppose that=¢ ¢ and¢’ =€ ¢”. Then for any
ac Awe get €, a) > (¢’,a) and ¢,a) > (¢’,a). Thus, ¢,a) > (¢’, a), which implies that >© ¢”.

SinceC is a separable metric space and since preferences areumrgjrthere exists a continuous
utility function f that describes preferences, i.e., f(c) > f(c¢) if and only ifc =C ¢’. LetY = f(C)
andc,c’ e f~1(y) for somey € Y. We now define preferences anx A as follows: §,a) >’ (y, &) if
and only if there exist € f~1(y) andc’ e f~1(y’) with (c, a) > (¢, &).

To show that these preferences are well defined; &eff “1(y) and€ e f~1(y’). We must show that
(6,a) > (&,a). f(c) = f(€) andf(c’) = f(&) and the fact thaf is a utility function for>C implies that
(c,a) ~(€,a)and ¢, &) ~ (€, a). Thus, € a) ~ (c,a) > (¢, &) ~ (€, ).

Completeness of preferencesfollows immediately from completeness »f To prove transitivity,
let (y,a) >’ (y',a) and §,a) >’ (y”’,a). This implies €,a) > (¢,&) and €,a) > (¢’,a’), where
ce f iy, c,¢ e f1(y)andc” € f1(y”). Sincec,& e f1(y) we get ¢,a) ~ (¢,a). Thus,
transitivity of > implies (, a) > (c”,&”), and thereforey, a) >’ (y”,a").

Next, we show continuity of’. Let (i, &), i € N be a sequence with limiy(a), and let {;, a) € YXA,
such that4;, &) >’ (y, a) for all i € N. We must show thaty(a) >’ (y, a).

For eachi € N let¢ e f=1(y). SinceC is compact, there exists a subsequeqgek € N that
converges. Let = limy_, Ci,. Continuity of f implies f(c) = limy_e f(G,) = liMkseo yi, = y. Since
(vie-a,) =" (y,a) if follows that (., a,) > (c,a) for somec € f~1(y). Continuity of preferences
implies that €, a) > (C,a). Hence §,a) >’ (y, a).

Similarly, it follows that if @, &) <’ (y, @) for all i € N then {, a) <’ (y,a). Thus, preferences’ are
continuous.

Next, note that preferences are strictly monotone ig. In particular, let ¢, a), (v, a) € Y x Awith
y>y. Letce f1(y) andc’ e f~1(y'). Becausef is a utility function describing preferences Gnit
follows thatc >C ¢’. This, in turn implies €, a) > (¢, a), and thereforey a) >’ (i, a).

BecauseY x Ais again a separable metric space, and the prefereriagsyY x Aare continuous, there
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exists a utility functiory that describes preferences. Strict monotonicity of preferences inimplies
thatg is strictly monotone iny. Finally, u(@) = g(f(c), a) is a continuous utility function that describes
preferences. m

Proof of Theorem 3. Note that if preferences are UCR then,@) =, (c1,a) if and only if (co, &) =,
(c1, &) for any citizen¢ and for any statev € Q. Thus, citizens’ voting behavior is the same if both
candidates choosgor if both choosed’. Thus, the winning probabilities as well as vote shares do no
change for candidates= 1, 2, i.e.,

Wi(w,a,a) = W(w,d,a), andV!(w,a,a) = Vi(w, &, &), foralla,a’ € A (31)

We prove the result for the case where candidates maximievittning probability. To get the prove
for expected vote-share maximizing one only needs to rephi¢) by Vi(.).

Suppose by way of contradiction that there exists a strichNequilibrium &g, a1) with ag # a;.
Then

[ W 0.2 i) > [ Wow 0. 20) ), (32)
[ Wi 0.2 i) > [ Wi 20,20 ) (33)

(32), (31) , and the fact that® + W = 1 imply
[ Wi, 20,80 dutw) < [ Wi, 21,80 dute) = [ WHw.20,20) du(w), (34)

But (34) contradicts (33). Thus, in any strict Nash equilibrag = a; = a.

Next, we prove uniqueness of the Nash equilibriayaj. First, suppose that there exists another pure
strategy Nash equilibriumag, a;). Since the Nash equilibriuna(a) is strict, it follows thatag, a; # a.
Further,le(w,a,a) du(w) > le(w,a,al) du(w) andfvvo(w,a,a) du(w) > fWO(a), a, ) du(w).
SinceW? + W! = 1 we get

[ W2 @) duw) < [ WPlw. a2 dutw); and (35)
[ Wio.a @ duto) < [ Who,20.8)dute) (36)
(35), (36) and the fact thasg, a;) is a Nash equilibrium implies
[Wew.aa)de) < [Wow.a.a)dutw) < [ Wo(w,20.20) (o 37)
[Wio.a @) du) < [ Wio.a.8)du(@) < [ Wow,a0.a0) di(w). (38)
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SinceW? + W! = 1, adding (37) and (38) yields a contradiction. Thus, thehNaguilibrium is unique
among all pure strategy equilibria. The remainder of thefyrthat there is no mixed strategy equilib-
rium, is identical to the last step in the proof of Theorenmul.

Proof of Theorem 4. Since one individual has non-UCR preferences, there egisgtigs a, a8’ such
that (o, @) > u(cy, @) and Co, &) < (cy, &). If all preferences are strict, we get the cases for theopés's
voting behavior listed in Table 2.

(c1,@) (€, &) (c1, @) (c1, &) (c1, @) (c1, &) (c1, @) (c1, &)

(cp,@ | 1,0 | 0,1 (cp,a | 1,0 1,0 (co,@ | 1,0 1,0 (co,@ | 1,0 | 0,1

(cp,@) | 1,0 0,1 (cp,@) | 1,0 0,1 (c,&@)| 0,1 | 0,1 (co,&@)| 0,1 ] 0,1
(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Table 2: Possible cases for non-UCR preferences

Without loss of generality assume that > ¢g. Letv: A — R with v(@) > v(a’) > v(a”) for all
a’ € A\ {a &}, andv(@) — v(a’) > c1 — cp. Similarly, leto: A — R with (@) > v(a) > v(a”’) for all
a’ € A\ {a, @}, andi(@) — v(a) > ¢1 — co. Consider the following four types of UCR voters, described
by their utility functions.

Type (&, Co): U(&,c) = v(d) - |c - col.
Type (a, ¢1): u(@ c) = v(@) - c - ¢yl
Type (&, Co): U(&,¢) = (&) — [c - col.
Type (&, ¢1): U(& c) = i(@) - lc - cal.

If one candidate proposeswhile the other proposes’, then each of these four types votes for the
candidate that féers the most preferred policy choice. If one candiddfersa or @ while the other
offers an policya” € A\ {a, &}, then all voters will support the candidate whiessa or &. Finally, if
both candidates proposeor both candidate proposg, then voters will support the candidate according
to their fixed characteristic. That is types o) and @, ¢p) vote for candidate 0, whilea(c;) and @', ¢1)
vote for candidate 1 (note that since no voter abstains maixignthe number of votes is equivalent to
maximizing the vote share).

Now consider case 1. Suppose there are two statesw1, w»} that are equally likely, and two voters
other than the non-UCR type. In stabe these two voters are of type, o) and @, ¢1), respectively. In
statew, they are of typed, cp) and @', ¢;). This generates exactly the pdigin Table 1, whera, & is
the strict Nash equilibrium.
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In case 2, we change the types #, ¢), (&, ¢1) in statew;, and @, ¢p), (&, 1) in statew,. The
resulting payf matrix is given in Table 3 and, & is again the strict Nash equilibrium both when
maximizing the winning probability or the vote share. We cee the same types in the two states to
generate the expected vote share for case 3 in the tableg \@hat) is again the strict Nash equilibrium.
In case 4, we use the same types as in case 1.

(c1,a) (C1, @) (c1,a) (C1, &) (c1,8) (C1. @)
(co, @) 2,1 15,15 (Co, @) 2,1 15,15 (Co, @) 2,1 15,15
(cp, @) | 25,05 1,2 (co,&) | 1.5,1.5| 1,2 (cp, &) | 0.5,25| 1,2
(a) Case 2 (b) Case 3 (c) Case 4

Table 3: Expected votes after UCR voters are added

Next, consider the game in which candidate maximize the wmprobability. We add the same
UCR types as in the game with vote share maximization. Theltheg paydf matrices are given in
table 4. If follows immediately that( &) is the strict Nash equilibrium.

(c1,@) (€, &) (c, @) (c1, &) (c1, @) (c1, &) (c1, @) (c1, &)
(co.a) | 1,0 | 3.3 (co.a) | 1,0 | 3.3 (co.a) | 1.0 | 3.3 (co.a) | 1,0 | 3.3
(co.a) | 33| 01| (c0@)| 10| 01| (co@)| 33| 01| (c0@)|01] 01
(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Table 4: Payfi matrix for winning probability maximization

Next, consider the case whem),@) ~ (¢, a) for the voter with the non UCR preferences. Then
in all four cases we change the probabilities of statgesand w, to 0.6 and 04, respectively to get a
strict equilibrium. For policies’, &, the non-UCR candidate is irftitrent, and therefore abstains. The
resulting expected vote shares are provided in Table 5 &skeft out since it is identical to case 1).

(c1,a) (C, &) (c1,a) (c, &) (c1,a) (&
2 1 | 16 14 2 1 | 16 14 2 1 | 16 14
€. | 335 | T3 | @8] 53 |FF| (8| 53 |FF
14 16 | 11 24 06 | 11 0426 | 11
(Co. @) | 575 | 33 (Co. @) | 5.5 | 33 (Co. @) | 5% | 33
(@) Case 1 (b) Case 2 (c) Case 4

Table 5: Expected vote shares wheg &) ~ (c1, &) for the non UCR voter

In all four casesd, @) is again the unique Nash equilibrium. In the case of winmingbability
maximizing @, &) is again the strict Nash equilibrium. The p#éymatrices resemble those in table 4,
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except that for strategies,@) the winning probabilities are.® and 04, respectively. If strategies are
(&, a) then in cases 1 and 3 the winning probabilities ade 8nd 06.

Similar constructions also apply if the non UCR voter is ffetient betweencf, a) and €1, a’) or
(co,&) and €1,a). m

7.1 Derivation of Equations Used in Section 5.2

To solve for the equilibrium we proceed as follows. We firsingforming the coordinates usind,
which results in indference curves that are circles. We then rotate the cooedirsatch that the fixed
characteristicg, is again on the horizontal axis. This can be done by appliagnatrix

K1k2

’\/1+K§K§ ’\/1+K%K§

1 ___Kik2
o= | Vi ‘/11“%“%] (39)

Note that

O'M‘[C]:[CJ].-‘:-K%KS ,andO-M-{o]:;{KZ(l_K?) (40)
a \/TKEK% k1(1+ «5)

For anyc anda let

aK]_(l + K2)
£c(0) = cyJ1+ K23, and £a(a) = —222 (41)
1+ KIK5

Let § = &(g), for candidates = 0,1, andd = &a(a). Definep by (18). Then (40) implies that we
have a new voting game in which Candidatan choose policiexi(+ 53, &), and voters have Euclidean
preferences ovec(d).

Voter type §;,6;) in the original voting game, corresponds to tyﬁ?'(ﬁéj,éj) in the transformed
game, wheré = &:(5) andé,- = éa(65). In the transformed game irftiirences curves are circles. Thus,
(6j,0;) preferes Candidate 0 to Candidate 1 if and only if

(Sj +ﬂéj -G —,350)2 + (él - 50)2 > (SJ +,Béj -C —ﬂél)z + (éj — 31)2. (42)

(42) is equivalent to

which implies
5 < 1 (& +pa)* - (<~io +/i<§lo)2 +~é§ _~é(2) — 20(3& - &) ~ Zﬂéil .
21+ & - +B(E - &)
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The optimization problems of candidates 0 and 1 are thexefor

2 1 (€1 +Bay)? — (Co +pB0)* + 82 - & — 20j(3g — &) -

> AjF] — 260 |- ' |, (43
n‘l"oaxjﬂ o 2.1+ K33 €1 =G0+ 58~ 20) i Jl o
s 1 (€1 + BE)? — (Co + BBo)? + & — 32 — 20;(3y — &) ~

> AjF; ———— - 2p0j| - w"|. (44
rginhl o 21/1+K1K2 €1 — Co +B(&1 — &) Jl @ (44)

In equilibriumag anda; must satisfy (43) and (44) and* must solve

(&1 + BE)? — (€0 + PBo)? + & — B2 — 26;(By — o)
€1 —Co +B(a1 — a0)

- 2,35,-] —w*|=05. (45)

J
1

Z/IJ'FJ

=1 21+ K25

Let

(€1 + BA)? — (o + BA0)* + & — B2 — 20;(3 — &) and K — 1

Cl_CO"'IB(al_aO) 2 ’1+K1K2

Then the first order conditions are

k(&o, 81) =

J 5 ~2B(Co + BAo) — 280 + 20} + k(30,3
Z““WW%ﬁ*ﬂ%*“ﬁq:M%Zﬁ2+2;—5(%m)=m (46)
J & + A1) — 28; + 26; + k(8o, &
- > i (K(k(2o. &) - 267) - ") K [ 28(& +é[l)’a_1)60+;1( ;1 _eg:) GoB)|_o 4y

j=1

Supposey andd; satisfy condition (19) discussed in the main text. If, iniidd &y anda; satisfy (46)
thendy anda; also satisfy (47). Substituting (19) into (46) yields

G+& | a+p) B 2,01 — &
Afjf| —— - | ——= | + (1 +B)——=| =0, (48)
=1 2‘,1+K1K2 21/1+K1K2 2 G- Co
which, using the definition of;; §; andé; is equivalent to
J
Co+ C1 « ﬂ 2 fA(GJ aO)]
/l-f-( —a))—+ 1+ 49
2,465 2 O ) o= o) “9
(45) simplifies to
J
Zﬁij(CO;Cl—w*):O.S, (50)

which implies thaw* = (cp + ¢1)/2.
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Continuity of (49) inag immediately implies that there exists a solution. To getve use the fact
thatday = £a(ag) and then apply (19) to geh .~ Finally, a; = g;l(él), implies condition (24).

Next, we derive the second order condition. The derivativihi® left-hand side of (46) with respect
todg is

J o B Ok(Zo, 2
D 4y (K (B, 20) ~ 267) ~ *) K (%)
= | ) (51)
I ~ . 0k(3p, &
+ Za,- fi (K(k(Bo. &) - 286)) — ) K (%).
=1
Next,
PKeo.2q) 2+ 1+B  9K(E0.A) (52)
d2ag Ci-C+p@-a) Ci-C+p@—-a) da
At any critical value ofag, (46) must be satisfied. Thus,
- . 1+4p OK(Bo, 8)
A fi (K(K(8g, &) — 280j) — 0" | K—— — ——— =0. 53
; i £ (K (k(3o, 81) — 286)) - w") 5 %t B 30 0% (53)

If a9 andd; satisfy (19) therag > & and

(€1 - %) > 0.

. . R R 1
Cl—Co+,3(a1—ao):1+—182

Hence there exista < &; < & < asuch thaty — & + (&1 — &) > 0 for anydy, &; € [a a).

As a consequence, (51), (52), and (53) imply that the secodet gondition is

i/le

j=1

n o 2 )
fj’(K(k(éo,él)—Zﬂéj)—w*)(—ak(goé;al)) (Ko, B) - 260 - o) 2L l<0’

€1 — Co +B(a1 — ao)

which is equivalent to

i A 1/ (K(K(Eo, &) — 2675) — ") (~28(Eo + Bo) - 280 + 20; + k(Zo, 1)) . 1\ o (s
| i (K(kEo, 81) - 2680) — ") (2(1+B?))(E1 — & + (Ba - Bo)) ’
where the last inequality holds since—= & + 8(& — &) > O.
Similarly, the second order condition for (44) is
L] (K(@o. ) - 265)) - o) (~28(80 + ) - 280 + 20 + K(Eo, B)) 1‘ o ey
S 1 (K(KE0.80) - 260) — ') (2(L+ B2))(&1 — & + BB — &) |

Both second order conditions are satisfied at the solutibtisedirst order conditions. In particular,

(K (<@, &) ~ 26 - ) = (B3~ o) = /@) =0
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which implies that the left-hand sides of (54) and (55)15@]9:1/1,- < 0. Thus, we have a local equilib-
rium that is strict.

We next show thatg(, a;) is characterized by (19) and (49) is the unique equilibrjuume or mixed.

In particular, we change coordinates, by using the orthaljavatrix

1
BecauseD is a rotation, the indierence curves of voters remain circles. In the previousgagame,
policy choices where on lines of the form ¢ Ba, a). Now note that after applyin the lines on which
policies are chosen are vertical. Next, (19) implies

-1 __B
D[vﬁ—ﬁ v—ﬁ] -

5. [eﬁﬁal)_[eowaoﬂ:u[rlﬁz@l—eo)]: Vo
& & ~17 (€ - &) o)

Thus, both candidates choose the same policy in the tramstbwvoting game. Further, the second
order conditions imply that the equilibrium is strict. Sénpreferences are circles, they are UCR. As a
conseguence, Theorem 3 implies that the equilibrium inrdmesformed voting game is unique. Hence
(39, &) is the unique equilibrium in the voting game with fixed pimsis & and feasible policy lines
(€ +pa, a).

We next show that the arithmetic mean of the candidatestiesla = (ag + a1)/2 is independent of
k1 andk,. In particular, using (19) to substitugg for a; in (47) yields

J 5 > ~
Co+ T ] @+p9) [,3 20—
Afj| —— - | ——= |5+ A +8)——= =0 (57)
jZ:; 21/1+K§K§ 21/1+K%K% 2 G-%
Adding (48) and (57) yields
J & + & 2)2 120, — (8 + &
Sty S | LAY [ o (58)
=1 21/1+K§K§ 2 l+K%K% -G

Substitutinga for (ag + a;)/2, applying functionga andéc, and eliminating constants, (58) simplifies to

J —
C 6 —a

Z/ljfj(co+ 1—w*) j

= 2 €1 - Co

Thus, the solutiora of (59) is independent of; andk».

- 0. (59)
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