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Abstract

We introduce a framework of electoral competition in which voters have general preferences over

candidates’ immutable characteristics (such as gender, race or previously committed policy positions)

and flexible policy positions. Candidates are uncertain about the distribution of voter preferences and

choose policy positions to maximize their winning probability.

We characterize a property of voter utility functions (“uniform candidate ranking”, UCR) that

captures a form of separability between fixed characteristics and policy. When voters have UCR

preferences, candidates’ equilibrium policies converge in any strict equilibrium. In contrast, notions

like competence or complementarity lead to non-UCR preferences and policy divergence. In particu-

lar, we introduce a new class of models that contains the probabilistic voting model as a special case

and in which there is a unique equilibrium that generically features policy divergence.
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1 Introduction

The political competition model introduced by Downs (1957)analyzes a setup in which two candidates

choose a platform from a one-dimensional set of feasible policies, such as the interval [0, 1]. All voters

have single-peaked preferences over this policy space. If candidates are ex-ante identical and purely

office-motivated, they propose identical policies to voters, namely the one that maximizes the utility of

the median voter. The question we address in this paper is whether policy convergence is a robust feature

of political competition if we admit a more general policy space and, in particular, more general voter

preferences, but otherwise keep Downs’s assumption of two office-motivated candidates who compete

under plurality rule.

To answer this question, we introduce a model where candidates have some unchangeable character-

istics like their previous experience, gender or race. On policy issues, candidates are flexible, and they

are willing to use these positions as tools to maximize the probability of getting elected. Voters’ prefer-

ences are defined over the candidates’ vectors of characteristics and policies, and are completely general.

In particular, we do not require that preferences are separable across characteristics and issues; funda-

mentally, this is the main departure from the existing literature. The distribution of voter preferences

depends on a state variable that is unknown to candidates at the time they choose their positions.

Our first and very straightforward result, Theorem 1, shows that differentiated fixed characteristics are

a necessary condition for (generic) equilibria with policydivergence to arise, even if we admit arbitrary

voter preferences. Intuitively, without fixed characteristics, the candidates’ payoffs on the main diagonal

of the payoff matrix (i.e., if both candidates choose the same policy) areequal to 1/2. Since we have

a constant sum game, the winning probabilities inany pure strategy equilibrium must be 1/2 for each

candidate and, generically, this can only be the case if the candidates choose the same policy.

This argument, however, breaks down if candidates have differentiated fixed characteristics. In that

case, it is possible that candidates choose different policies in an equilibrium with unequal winning

probabilities because candidates cannot perfectly copy their opponent: Even if a candidate chooses the

same policy platform as his opponent, the existence of fixed characteristics implies that many or all voters

can still have strict preferences for one of the candidates.Hence, there is no guarantee that imitating the

opponent increases the winning probability of the candidate who has the lower winning probability in an

equilibrium with policy divergence.

This insight raises the question whether there is a class of voter preferences for which equilibrium

policy convergence is still guaranteed, even if candidateshave differentiated fixed characteristics. We

find such a general property of voter preferences that we calluniform candidate ranking(UCR). UCR

does not impose any restrictions on voter preferences if candidates choose different policies, but if the

two candidates choose the same policy platform, a UCR voter always prefers the same candidate. That

is, suppose that, due to the difference in fixed characteristics, a voter prefers Candidate 0to Candidate 1
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if both propose policya; then a UCR voter also prefers Candidate 0 to Candidate 1 if both propose policy

a′. Since every voter votes the same, whether both candidates choosea or both choosea′, the UCR as-

sumption implies that the diagonal entries of the payoffmatrix must be identical.1 Using this observation

and the fact that the game is a zero sum game, Theorem 3 shows that there is policy convergence in any

strict Nash equilibrium of a voting game with UCR preferences and ex-ante non-identical candidates.

Are UCR preferences anecessarycondition for equilibrium policy convergence? Absent additional

conditions, we cannot expect any assumption on individual preferences to be necessary. For example,

if citizens with non-UCR preferences are never pivotal, then the violation of UCR would not matter for

equilibrium convergence. The same is true if UCR is violatedfor some policies that are undesirable

for sufficiently many voters. However, we show that UCR preferences are “close to necessary”, in the

following sense: If we endow just one individual with non-UCR preferences, then there always exists

a voting game (even in large electorates) where all other voters have UCR preferences and the unique

strict Nash equilibrium has policy divergence (Theorem 4).This type of “necessity” is analogous to that

of single-peaked preferences for the existence of a Condorcet winner, because single-peakedness of all

voters’ preferences is also not necessary for a Condorcet winner to exist, but the existence of a single

voter whose preferences are not single-peaked can lead to the non-existence of a Condorcet winner. As

an alternative approach to show that UCR is “close to necessary” for policy convergence, Section 5 shows

a class of models in which equilibrium policies converge if and only if preferences are UCR.

Most preferences found in models in the literature — such as the one-dimensional Downsian model,

the Downsian model with uncertainty about the median, the Downsian model with valence, or the prob-

abilistic voting model — are additively separable between fixed characteristics and flexible issues and

can easily be seen to satisfy UCR. While Theorem 2 shows that the class of UCR preferences is more

general than the class of additively separable preferences, there are also natural circumstances in which

voters have non-UCR preferences, and where policies diverge in a robust pure strategy equilibrium.

In Section 5, we present such a class of models that captures the notion of complementarity by gen-

eralizing the classical probabilistic voting model (PVM).In the PVM, groups are identified as voters

who have the same “economic” preferences (i.e., preferences over policies chosen by the candidates),

but within a group, voters may differ with respect to “ideology.” Most papers in the probabilistic vot-

ing literature operationalize the notion of ideology through an additive ideology shock to the economic

preferences, but one way to think about ideology is that it captures utility derived from the candidates’

positions on a second policy dimension, orthogonal to fiscalpolicy, in which candidates cannot make

credible commitments, but set an optimal policy after the election according to their preferred position.

We explicitly model the relevant policy space as two-dimensional: In one dimension, candidates are

exogenously fixed while they can choose their policy position in the other dimension. If indifference

1Of course, in contrast to the case with identical fixed characteristics, the winning probabilities on the main diagonal do not

have to be 1/2.
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curves are exact circles in this two-dimensional space, then the fixed and the flexible dimension are com-

pletely independent of each other in the voters’ utility functions. In this case, the model has a unique

equilibrium with convergence that corresponds to the equilibrium of the standard PVM. In contrast, ellip-

tical indifference curves with the major axis located in a southwest–northeast direction capture a notion

of complementarity between fixed and flexible dimension, in the sense that a voter’s ideal policy on the

flexible policy dimension is increasing in the candidate’s position on the fixed dimension. For example,

suppose that two presidential candidates differ in their posture towards international security cooperation

(e.g., how willing they are to work within the framework of international organization, or also by how

much cooperation/opposition these candidates would get from international actors). Candidates are fixed

in this dimension, but they can choose the size of their proposed military spending. In this context, it

is not implausible that a voter’s ideal defense budget depends on the candidate’s identity, i.e., his fixed

characteristics.

With elliptical preferences, the model still has a unique equilibrium, but one that features policy

divergence. Specifically, the candidate with a higher fixed characteristic chooses a higher position on

the flexible policy dimension than his opponent. From a technical point of view, the model shows the

surprising usefulness of Theorem 3 in a setting with non-UCRpreferences. Specifically, we show that

the policy space can be transformed in a way that voter preferences are UCR in the transformed policy

space. We then apply Theorem 3 to show that the equilibrium inthe transformed space is unique and

features convergence. Re-transformation of the policy space then shows that the equilibrium in the actual

policy space is still unique, but features divergence.

This new class of non-UCR models captures the natural notionof complementarity and is thus of

direct substantive interest. It also provides us with a tractable model in which purely office-motivated

candidates choose divergent policy platforms — in contrastto the standard model in which office moti-

vated candidates have a strong incentive for platform convergence. One of the most popular models used

to explain policy divergence within the standard spatial framework assumes that candidates are policy-

motivated, i.e., candidates are willing to lower their chance of winning in the election in exchange for

being able to implement a particular policy in case they win.Thus, the reader may ask whether we need

an explanation other than policy motivation for policy divergence, and whether our model is empirically

distinguishable from the model with policy-motivation.

Concerning the first question, we do not see our assumption of“office-motivation” as diametrically

opposed to policy-motivation. In fact, it is quite plausible that candidates are policy-motivated in some is-

sues, but these issues can be captured as “fixed positions” inour framework. Candidates use the positions

on theremainingissues as tools to get elected —either because they care about the material aspects of

the office (classical office-motivation), or because they care primarily about the implementation of their

core convictions.2 Explaining policy divergenceon flexible issuesin this framework is useful, because by

2By interpreting (some) fixed characteristics as already committed policy positions based on candidates’ “core convictions”

while preserving an instrumental interpretation of policychoices on other issues, our model also provides a middle ground
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focusing on the standard model of policy motivation, we may miss other interesting and relevant reasons

why divergence arises in practice. In particular, in our model, divergence may be a strategy that max-

imizes a candidate’s probability of winning, and thus wouldnot have to be interpreted as an indication

that the candidate is policy-motivated.

Related to the second question, the candidates’ incentivesthat generate policy divergence differ be-

tween our model and the standard model with policy-motivated candidates. These different incentives

can be used to generate testable predictions that allow to empirically discriminate between the two mod-

els. In the standard spatial model, there are costs and benefits of policy divergence. By choosing a

platform farther away from his opponent’s, a candidate trades off an increased utility from policy if he

wins against a lower chance of winning. In our model, candidates are assumed to maximize the prob-

ability of winning, and in some situations, this will inducethem to choose positions that diverge from

their opponent’s equilibrium position. Thus, changes in the environment that affect the costs and benefits

(e.g., an increase in the wage of the office-holder) should affect policy positions in the Downsian model,

but not in ours. Similarly, the cost of policy divergence (interms of reduction of the winning probability)

is affected by the quality of information about the median voter’spreferred position. Better and more

easily available opinion polls should translate into smaller policy divergence in the standard model. In

contrast, the extent of equilibrium divergence in Section 5is independent of the uncertainty about voter

preferences, and thus of the availability and quality of opinion polls.

2 Previous Literature

The platform choice of candidates for political office is one of the major areas of interest in formal models

of politics. There is a huge literature on the topic of policyconvergence or divergence in one-dimensional

models (or models with one policy dimension and one valence dimension). For excellent reviews of this

area, see, e.g., Osborne (1995) and Grofman (2004).

There is a large literature that tries to explain, within theDownsian model, the empirical observation

that candidates often propose considerably divergent policies. Candidates may diverge even though this

decreases their winning probability, because they care about the implemented policy (see, e.g., Wittman

(1983), Calvert (1985), Roemer (1994), Martinelli (2001),Gul and Pesendorfer (2009)). In contrast, in

our model, divergence may increase a candidate’s probability of winning.

Some models obtain policy divergence with office-motivated candidates in a one-dimensional setting

with incomplete information among voters about candidate characteristics (e.g. Callander (2008)) or

among candidates about the position of the median voter (Castanheira (2003), Bernhardt, Duggan, and

Squintani (2006)). Another branch of literature on divergence with office motivation, which is less

between Downsian models, in which candidates are free to choose any position, and the citizen candidate model in which no

commitment is possible.
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directly related to our paper, explains policy divergence as entry deterrence by two dominant parties

(e.g., Palfrey (1984), Callander (2005)).

Both the literature on candidates with valence (e.g. Ansolabehere and Snyder (2000), Groseclose

(2001), Groseclose (2007)) and the probabilistic voting literature (e.g., Hinich (1978), Lindbeck and

Weibull (1987), Lindbeck and Weibull (1993), Coughlin (1992), Dixit and Londregan (1995), Banks and

Duggan (2005)) share with our paper the feature that voters care both about candidates’ unchangeable

characteristics and their flexible policy positions. However, voter preferences in all these papers sat-

isfy our UCR-property and thus, by Theorem 3, any pure strategy equilibrium in these models features

convergence.

Krasa and Polborn (2010a) analyze a model with office-motivated candidates in which both fixed

characteristics and flexible positions are binary and voters have an additively separable utility function.

The main focus of Krasa and Polborn (2010a) is to characterize voter preference distributions for which

candidates have “majority-efficient” positions, and under which conditions candidates choose majority-

efficient positions in settings where those exist (a position onflexible issues is majority-efficient if there

is no other position that a majority of voters would prefer from that candidate). Since additive voter

preferences satisfy our UCR condition, any equilibrium “divergence” in Krasa and Polborn (2010a) is in

mixed strategies only. In contrast, in Section 5 of the present paper, we show that divergence can arise in

a strict pure strategy Nash equilibrium when voter preferences are of the non-UCR type.

There are a few dispersed papers in the literature in which voters are endowed with non-UCR pref-

erences and in which a pure strategy equilibrium thus (can) feature policy-divergence. For example,

Adams and Merrill (2003) analyze a model in which voters have, in addition to preferences over policy

positions from the [0, 1] interval, “non-policy preferences” over the two candidates, which corresponds

to different fixed positions in our setting. They assume that votersmay abstain due to being almost in-

different between candidates, or due to “alienation” (if their preferred candidate does not provide them

with sufficient utility). While there is still policy convergence in this model if voters only abstain from

indifference (see also Erikson and Romero (1990)), they show that abstention from alienation may pro-

vide an incentive for strong divergence. We show that abstention due to alienation leads to non-UCR

preferences, which is the fundamental reason for divergence in Adams and Merrill (2003). Similarly, in

a variation of their basic probabilistic voting model of redistribution between different economic groups,

Dixit and Londregan (1996) show that, if candidates differ in how well they can transfer resources to

different interest groups, then they usually propose different transfers.

Finally, Soubeyran (2009), Krasa and Polborn (2010b, 2011)and Jensen (2009) analyze settings

in which candidates differ in their ability to implement certain policies. In these settings, competence

differentials give rise to non-UCR preferences in a natural way.In all of these papers, the focus is on

the particular application, while our main interest here isto understand which general properties of voter

utility functions drive policy convergence or divergence results.
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3 The Model

Two candidates,j = 0, 1, compete in an election. Candidates are office-motivated and receive utility

1 if elected, and utility 0 otherwise, independent of the implemented policy. Candidatej has fixed

characteristicsc j ∈ C, which we also call histype. If elected, Candidatej implements a policy position

a j ∈ A.

Uncertainty about voter preferences is described by a probability space (Ω,O, µ): A stateω ∈ Ω
determines voters’ preferences overC × A, andµ is the probability distribution of these “preference

shocks”, whileO is the set of measurable events. In particular, letPr be the set of preferences onC × A.

Then the preferences of voterℓ ∈ L = {1, . . . , L} in stateω ∈ Ω are�ℓω∈ Pr .3

The timing of the game is as follows:

Stage 1 Candidatesj = 0, 1 simultaneously announce policiesa j ∈ A. A mixed strategy by Candidatej

consists of a probability distributionσ j overA.

Stage 2 Stateω ∈ Ω is realized and each citizen votes for his preferred candidate, or abstains when he

is indifferent.4

We consider two different objectives for the candidates, maximizing the probability of winning, and

maximizing the expected vote share.5

Objective 1: Probability of winning maximization.

Candidatej wins the election if he receives more votes than his opponent. In case of a tie between the

candidates, each wins with probability 1/2. LetW j(ω, a0, a1) denote Candidatej’s winning probability

in stateω, given policiesa0 anda1. Formally, W0(ω, a0, a1) = ξ(ν(ω, a0, a1)), whereξ(x < 0) = 0,

ξ(0) = 1/2 andξ(x > 0) = 1; andν(ω, a0, a1) = #
{

ℓ
∣

∣

∣

∣
(c0, a0) �ℓω (c1, a1)

}

− #
{

ℓ
∣

∣

∣

∣
(c1, a1) �ℓω (c0, a0)

}

.

Candidate 1’s winning probability is given byW1(ω, a0, a1) = 1−W0(ω, a0, a1).

Objective 2: Vote share maximization.

3More formally, letPr be aσ-algebra of measurable subsets ofPr then voterℓ’s random preferences are given by a measur-

able functiontℓ : Ω→ Pr . For example, ifC andA are finite thenPr is finite. In this case,Pr is the set of all subsets ofPr , and

measurability means that the set of all statesω that are mapped into one particular preference ordering is measurable.
4If a voter has a strict preference, then it is a weakly dominant strategy to vote for the preferred candidate. If a voter is

indifferent, he could in principle vote for any candidate or abstain. We assume that he abstains, which is quite natural (e.g.,

in the presence of even very small voting costs), and also allows us to easily model a random number of votersL(ω) ≤ L by

simply by modelingL − L(ω) voters as indifferent between all policies, so that they will abstain no matter what policies the

candidates choose.
5Note that it is interesting to investigate both objectives,since they lead in general to different equilibria (see Patty (2005)

and Patty (2007)).
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Candidate 0’s vote share in stateω is given by

V0(ω, a0, a1) =
#
{

ℓ
∣

∣

∣

∣

(c0, a0) ≻ℓω (c1, a1)
}

#
{

ℓ
∣

∣

∣

∣

(c0, a0) /ℓω (c1, a1)
} ,

and Candidate 1’s vote share isV1(ω, a0, a1) = 1− V0(ω, a0, a1).

Definition 1 1. Consider the game where candidates maximize their respective winning probability.

(a) (a0, a1) is a pure strategy Nash equilibrium if and only if
∫

W0(ω, a0, a1) dµ(ω) ≥
∫

W0(ω, a′0, a1) dµ(ω), and
∫

W1(ω, a0, a1) dµ(ω) ≥
∫

W1(ω, a0, a
′
1) dµ(ω);

for all a′0, a
′
1 ∈ A.

(b) (a0, a1) is a strict Nash equilibrium if and only if the above inequalities are strict for all

a′0 , a0, and a′1 , a1.

(c) A pair of probability distributions(ρ0, ρ1) on A is amixed strategy Nash equilibrium if

and only if a0 ∈ arg max
∫

W0(ω, a0, a1) dµ(ω) dρ1(a1) for all a0 in the support ofρ0, and

a1 ∈ arg max
∫

W1(ω, a0, a1) dµ(ω) dρ0(a0) for all a1 in the support ofρ1.

2. To get the corresponding definitions for the game with voteshare maximization, replace W0 by V0

and W1 by V1.

4 Convergence and Divergence of Equilibrium Policies

4.1 A General Convergence Result without Fixed Characteristics

Our first result shows that, for arbitrary voter preferences, if candidates’ fixed characteristics coincide,

then any generic pure strategy equilibrium displays policyconvergence. Note that Theorem 1 is a char-

acterization result and does not provide conditions under which a strict Nash equilibrium exists. Indeed,

since our framework is very general, necessary and sufficient conditions for equilibrium existence are

hard to obtain. Nevertheless, we know that Theorem 1 is not vacuous as there are classes of voter pref-

erences, such as the Downsian model or the probabilistic voting model, in which a strict equilibrium is

known to exist. The main usefulness of Theorem 1 is thereforethat it tells modelers that, as long as

candidates are identical,noutility functions for voters will be able to generate equilibrium divergence.

Theorem 1 Suppose that c0 = c1. Then the following holds in the game with winning probability maxi-

mization and the game with vote share maximization.
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1. If there exists a pure strategy Nash equilibrium(a0, a1) with a0 , a1, then(a0, a0) and (a1, a1) are

also pure strategy Nash equilibria.

2. If there exists a strict Nash equilibrium(a0, a1) then a0 = a1 and this strict Nash equilibrium is the

unique Nash equilibrium (pure or mixed).

Divergent pure strategy equilibria cannot be unique, as long as candidates’ fixed characteristics do not

differ: Whenever they exist, there is also an equilibrium with policy convergence; moreover, any policy

divergence is weak in the sense that candidates do not strictly prefer the particular platform they choose.

Thus, our result generalizes the convergence results familiar from the Downsian model to a setup with

multiple issues and uncertainty about preferences. In the Downsian model under certainty both candi-

dates choose the policy that is most preferred by the median voter. If the position of the median voter is

uncertain, then candidates converge on the “median median,” that is, there is no other position that would

make a majority better off in a majority of states. The intuition of the median voter theorem continues to

hold for general preferences: In an equilibrium, no other position can make a majority of voters better off

in a majority of states. The reason is that, if such a policy position existed, then either candidate could

deviate to it, thereby increasing his winning probability to more than 1/2.

Theorem 1 is related to Theorem 7.1 in Austen-Smith and Banks(2005). In a setting with certainty

about the preference distribution of voters, they show thata pair of platforms (a0, a1) is an equilibrium

if and only if a0 anda1 are both policies that cannot be blocked by a decisive coalition (i.e., in the case

of plurality rule, that are Condorcet winners). In many frameworks, there is (at most) one Condorcet

winner, in which case convergence arises trivially. However, even if this is not the case, Theorem 1

shows that divergent equilibria can neither be strict nor unique.

Finally, it is quite clear that Theorem 1 cannot hold if thereare more than two identical candidates.

To see this, suppose that there are three candidates, and there is just one binary issue and two states of

the world; in state 0, which obtains with probability 0.6, all voters prefer position 0, and in state 1, which

obtains with probability 0.4, all voters prefer position 1.In this case, it is clearly a strict equilibrium that

two candidates choose position 0 and the third one chooses position 1, leading to winning probabilities of

0.3 for each of the two candidates who share position 0 (assuming that voters randomize between them

in state 0), and 0.4 for the candidate in position 1 who wins instate 1. It is also obvious that (0, 0, 0) is

not an equilibrium, because (for example) the third candidate could deviate to 1 and increase his winning

probability from 1/3 in (0, 0, 0) to 0.4 in (0, 0, 1).

4.2 UCR Preferences

We now turn to the more relevant case that candidates’ fixed characteristics differ, and analyze under

which conditions there is policy convergence in those issues that candidates are free to choose. In this

section, we identify a condition on voter preferences called uniform candidate ranking (UCR). In Sec-
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tion 4.3, we show that UCR preferences are sufficient for equilibrium policies to (generically) converge,

and that they are, in a certain sense, also necessary for convergence results.

We start with the definition of UCR preferences. Suppose thatboth candidates choose the same

policy a ∈ A. We say that a voter hasuniform candidate ranking (UCR)preferences if his preferences for

the candidates are independent ofa. For example, suppose thatC = A = {0, 1}. Preferences are therefore

defined on{0, 1} × {0, 1}, where the first coordinate is the candidate’s fixed characteristic and the second

one the policy issue. A UCR voter prefers (0, 0) to (1, 0) if and only if he also prefers (0, 1) to (1, 1).

Definition 2 Preferences� on C×A allow for auniform candidate ranking (UCR) if, for all c0, c1 ∈ C

and all a, a′ ∈ A,

(c0, a) � (c1, a) if and only if(c0, a
′) � (c1, a

′). (1)

Models in which candidates have no fixed characteristics (e.g., the standard one-dimensional Down-

sian model) automatically satisfy Definition 2. Also, a model with a one-dimensional policy space and

random candidate valences satisfies UCR, as does a model withuncertainty about the preferred position

of the median voter (as well as valence). Likewise, voter preferences in the probabilistic voting model

(see, e.g., Lindbeck and Weibull (1987), Lindbeck and Weibull (1993), Coughlin (1992)) satisfy UCR.

For example, consider a model with stochastic valence: In stateω = (ω0, ω1), voterθ’s utility from

Candidate 0 is given byω0 − (a0 − θ)2, while his utility from Candidate 1 is given byω1 − (a1 − θ)2.

Clearly, whena0 = a1, the voter strictly prefers Candidate 0 if and only ifω0 > ω1. Since this preference

is independent of the particular policya0 = a1, UCR is satisfied.

Note that Definition 2 refers to pairwise comparisons of candidates (consisting of fixed and flexible

policies). Thus, whether UCR holds is a property of utility functions and therefore independent of the

actual number of candidates. While we focus on settings in which two candidates compete against each

other, Definition 2 would remain unchanged if there are more than two candidates. Of course, if the two

candidatesc0, c1 are already fixed, we can effectively restrict the setC to contain exactly these two values,

which makes it easier for preferences to satisfy UCR. That is, because (1) has to hold for all pairs of fixed

characteristics inC, there are preferences that would fail UCR on a very general set of candidate-fixed

characteristicsC, but that satisfy UCR for a given specific pair of candidates,C = {c0, c1}.

While UCR preferences are prevalent in the literature, there are natural circumstances in which pref-

erences violate UCR. For example, suppose that a candidate’s fixed characteristics capture his compe-

tence in implementing different policies. Specifically, suppose that the fixed characteristic is whether or

not a candidate has served in the military, while the policy issue is whether or not to go to war with some

other country. It is conceivable that a voter considers the candidate who has served in the military as a

better leader for the country during a war, while preferringhis opponent with a civilian background if

there is peace. Formally, such a voter could have the preference (1, 1) ≻ (0, 0) ≻ (1, 0) ≻ (0, 1), that is,

prefers most to go to war with a leader with military experience, while the second best option is not to go
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to war and have a leader with civilian background, which again is better than both “mixed” policy vec-

tors. These preferences violate UCR, because the voter’s preferred candidate changes from the situation

that both propose to go to war to another one in which both propose peace.

We now characterize the set of utility functions that represent UCR preferences.

Theorem 2 Let A and C be separable metric spaces, and let C be compact. Then the following state-

ments are equivalent:

1. Rational (i.e., complete and transitive) and continuous6 preferences� on C× A satisfy UCR.

2. The preferences� can be described by a continuous utility function u(c, a) = g( f (c), a) where

f : C→ Y ⊂ R is continuous, andg : Y × A→ R is continuous and strictly monotone iny ∈ Y.7

We can interpretf (c) as the voter’s ranking of the candidates’ fixed characteristics — a higher value of

f (c) indicates that the voter ranks the candidate higher, sinceg is strictly monotone inf (c). Thus, a

voter’s preferences satisfy UCR if and only if there is such aranking that is independent of policya.

If the utility function is additively separable acrossA and C, i.e., u(c, a) = uC(c) + uA(a), then

Theorem 2 immediately implies that preferences satisfy UCR. Suppose, for example, thatC ⊂ R and

that A =
∏I

i=1 Ai (i.e., there areI different issues). Thus, a candidate’s policy can be written asa =

(a1, . . . , aI ), and the “weighted issue preferences” of Krasa and Polborn(2010a), can be represented by

the additively separable utility function

u(a, c) = −λC|c− θC| −
I

∑

i=1

λi |ai − θi |. (2)

Parametersθ andλ can be interpreted as ideal positions and weights that measure the relative importance

of the fixed and selectable issues, respectively.8 Another class of preferences with additively separable

utility function are those where indifference curves are circles around an ideal pointθ. While additive

separability guarantees that UCR holds, the following example shows that it is not a necessary condition.

Example 1 Let c0 = 0, c1 = 1, and assume that there is only one binary policy issue, i.e., A = {0, 1}. The

voter’s preference is (0, 0) ≻ (0, 1) ≻ (1, 1) ≻ (1, 0). Clearly, UCR is satisfied, as Candidate 0 is always

preferred to Candidate 1. However, these preferences cannot be represented by an additively separable

6Note that continuity is automatically satisfied ifA andC are finite.
7Note thatY inherits its topology as well as its ordering from the reals.
8Implicitly, separability of preferences is assumed in several internet-based political comparison programs. For exam-

ple, smartvote.ch (a cooperation project of several Swiss universities) collects the political positions of candidates in national

elections by asking candidates a number of yes/no questions on different political issues. Voters can answer the same ques-

tions on a website (and also choose a weight for each issue) and are given a list of those candidates who agree with them

most. Similar programs exist for the U.S. (http://www.myspace.com/mydebates), Germany (http://www.wahl-o-mat.de), Aus-

tria (http://www.wahlkabine.at/) and the Netherlands (http://www.stemwijzer.nl/).
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utility function uC(c) + uA(a) because (0, 0) ≻ (0, 1) would imply uA(0) > uA(1), while (1, 1) ≻ (1, 0)

would imply uA(1) > uA(0), a contradiction.

4.3 Convergence and Divergence

The following Theorem 3 again considers the topic of convergence, but in contrast to Theorem 1, it allows

for candidates’ fixed positions to differ and focuses on the case that all voters have UCR preferences for

a.e. realization ofω ∈ Ω. Under these conditions, there is policy convergence in allstrict Nash equilibria.

Moreover, if a strict Nash equilibrium exists, then it is unique.

Theorem 3 Suppose that all voters have UCR preferences for a.e. realization ofω ∈ Ω (c0 and c1 are

arbitrary, in contrast to Theorem 1). Then the following holds in the game with winning probability

maximization and the game with vote share maximization.

1. There is policy convergence in any strict Nash equilibrium (a0, a1), i.e. a0 = a1.

2. If there exists a strict Nash equilibrium then it is the unique Nash equilibrium (pure or mixed).

It is useful to discuss here the intuition for how the UCR assumption shapes Theorem 3. For com-

parison, remember that, in the case that candidates do not differ in fixed characteristics, the fact that a

candidate can always copy his opponent and thereby secure a winning probability of 1/2 implies that

strict equilibria cannot be off the diagonal. In contrast, with different fixed characteristics, UCR pref-

erences allow for potentially asymmetric payoffs for the two candidates. However, the key feature of

UCR preferences is that it is still true that each candidate can always secure a particular set of supporters

by copying his opponent. This feature again implies that strict equilibria cannot be off the diagonal –

reverting to the diagonal by copying the opponent is either attractive for Candidate 0 or for Candidate 1.

More formally, suppose both candidates choose the same policy a. Since voters have UCR prefer-

ences, the winning probabilities do not change if both candidates switch toa′. This means that the entries

on the diagonal of the payoff matrix (i.e., wherea0 = a1) are identical, though not necessarily equal to

1/2. Suppose, by way of contradiction, that there is a strict Nash equilibrium (a0, a1), with a0 , a1.

This would require that Candidate 0 strictly prefers his payoff in (a0, a1) to his payoff in (a1, a1), i.e.,

the payoff that he could obtain by deviating toa1. Similarly, Candidate 1 strictly prefers his payoff in

(a0, a1) to his payoff in (a0, a0). However, since the candidates play a constant sum game andthe payoffs

in (a0, a0) and (a1, a1) are equal because of UCR, we get a contradiction.

The proof of Theorem 3 relies on the fact that candidates playa constant-sum game in our model,

whether they care about their probability of winning or their vote share. As Zakharov (2012) has shown,

if candidates for political office are assumed not to be in pure conflict (i.e., their utilities as a function of
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the votes they receive do not sum up to a constant), then policy divergence may arise even if voters have

UCR preferences.

One of the very few models with an equilibrium in which office-motivated candidates choose di-

vergent platforms is Adams and Merrill (2003). Our results indicate that this must be due to non-UCR

preferences in their model. Voters in their model have additively separable preferences that incorporate

both a (continuous) policy issue and partisan preferences (akin to “fixed characteristics” in our terminol-

ogy). Specifically, consider the following example.

Example 2 There is one fixed characteristic, which Adams and Merrill (2003) refer to as partisanship,

and a one-dimensional policy variable in [0, 1]. A citizen’s type is of the form (P, θ), whereP ∈ {D,R}
denotes the partisan preference, andθ the most preferred policy. Utility of type (D, θ) from Candi-

date (D, x) is B− |θ− x| and−|θ− x| from Candidate (R, x). Similarly, type (R, θ) also hasθ as ideal point,

but gets a utility benefit ofB from the Republican candidate. However, this “utility function” is not a

standard utility function in the sense that it completely describes behavior. In particular, they assume

that citizens abstain (i) if the utility difference between candidates is below a threshold (“abstention from

indifference”), or (ii) if the utility from the preferred candidate is below some thresholdT (“abstention

from alienation”). While the model of Erikson and Romero (1990) has only the first effect and gener-

ates equilibrium convergence, the second effect may lead to (effective) preferences violating UCR. To

see this, consider only the second effect, and define effective voter preferences of a Democratic partisan

(D, θ) given policy platformsxD andxR as

D ≻ R ⇐⇒ B− |xD − θ| > −|xR− θ| andB− |xD − θ| > T

R≻ D ⇐⇒ B− |xD − θ| < −|xR− θ| and − |xR− θ| > T

D ∼ R ⇐⇒ B− |xD − θ| ≤ T and − |xR− θ| ≤ T

In order to have some participation,B ≥ T and in order for the alienation constraint to matterB ≤ T+0.5.

To see that these preferences violate UCR, consider a Democratic partisan with an ideal policy point of

θ = 0. If both candidates were to propose the same policyxD = xR = 0, thenD ≻ R (i.e., the voter votes

for D). If, instead,x = 0.5 thenD ∼ R, because the voter is alienated and therefore abstains. Thus, these

preferences violate UCR.9

Theorem 3 indicates that we have to focus on non-UCR preferences in order to generate policy

divergence. In fact, it is easy to find such voting games.

Example 3 There are two candidatescG , cB and two policies,aG, aB, whereaG is interpreted as fo-

cusing spending on national security (guns), whileaB corresponds to focusing on healthcare or schooling

9Since voters in Erikson and Romero (1990) and Adams and Merrill (2003) only fulfill transitivity for strict preferences,our

theorems do not apply directly. However, from comparing thetwo models, it is clear that the violation of UCR in Adams and

Merrill (2003) drives the divergence result.

12



(butter). Candidate 0 is knowledgeable about national security issues, while Candidate 1’s expertise is

on social policies. Thus, it is reasonable to assume that there are the following types of voters:

Type G: (cG, aG) ≻ (cB, aB) ≻ (cG, aB) ≻ (cB, aG).

Type B: (cB, aB) ≻ (cG, aG) ≻ (cB, aG) ≻ (cG, aB).

Thus, typeG voters prefer “guns” to “butter”, and also have a preferencefor competent policy imple-

mentation, i.e., they prefer policies implemented by the candidate who has the corresponding expertise.

Type B voters prefer “butter” to “guns”, and also seek competence in policy implementation. Let the

number of citizens of each type be given bynG(ω) andnB(ω), respectively, whereω ∈ Ω reflects uncer-

tainty about the distribution of preferences. Then the number of voters in stateω is given by

(cB, aG) (cB, aB)

(cG, aG) nG(ω) + nB(ω), 0 nG(ω), nB(ω)

(cG, aB) nG(ω), nB(ω) 0, nG(ω) + nB(ω)

Then (aG, aB) is the unique Nash equilibrium and (cG, aG), (cB, aB) are the unique equilibrium platforms

of the game with vote-share maximization. If, in addition,µ({ω|nG(ω) > nB(ω)}) > 0 andµ({ω|nG(ω) <

nB(ω)}) > 0, then (cG, aG), (cB, aB) are also the equilibrium platforms of the game where candidates

maximize the winning probability.10

Are UCR preferences anecessarycondition for equilibrium policy convergence? It is easy tosee

that no property imposed solely on citizens’ preferences, such as UCR, can be simultaneously necessary

and sufficient for policy convergence. For example, if citizens withnon-UCR preferences are never

pivotal, then the violation of UCR would not matter for equilibrium convergence. The same is true if

UCR is violated for some policies that are sufficiently undesirable for most voters. However, Theorem 4

shows that even if there is just one voter with arbitrary non-UCR preferences, then there are always some

voting games in which everyone else has UCR preferences, butthat have a strict equilibrium with policy

divergence.

This is completely analogous to the well-known condition ofsingle-peaked preferences in a one-

dimensional policy space. If all voters have single-peakedpreferences, the existence of a Condorcet

winner is guaranteed. However, while a Condorcet winner canstill exist when some voters don’t have

single-peaked preferences, it is also possible to construct examples in which only one voter violated

single-peakedness and no Condorcet winner exists.

10Note that we can easily add more voter types to Example 3 without immediately affecting the equilibrium. Even adding an

arbitrary number of partisans (who vote for one candidate irrespective of the candidate’s policy) preserves (cG,aG), (cB, aB) as

the unique Nash equilibrium, as long as typeG andB voters remain pivotal with positive probability. If the probability that type

G andB voters are pivotal is zero, then any combination of strategies is an equilibrium of the game where candidates maximize

their probability of winning.
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Theorem 4 Let� be some arbitrary non-UCR preferences on C× A and suppose that A is finite. Then

there exists a voting game with the following property:

1. One citizen has preferences� and all other citizens have UCR preferences.

2. There exists a pure strategy Nash equilibrium with policydivergence, for both winning probability

and vote share maximization. Furthermore, the equilibriumis strict, and there is no other Nash

equilibrium in either pure or mixed strategies.

The detailed construction of the voting games is in the proofof Theorem 4 in the Appendix, but we

provide an intuition based on a (generalizable) example here in which candidates maximize their vote

share. Consider an individual whose preferences violate UCR for actionsa anda′. There are just a few

possibilities how candidate choices of policiesa or a′ translate into votes for the candidates. Since the

preferences violate UCR, the diagonal elements cannot be same. For example, our non-UCR voter’s

voting behavior for actionsa anda′ of the candidates could be the one summarized in Table 1a. The

numbers in this table denote the votes for the two candidates, for example, “1, 0” denotes that the non-

UCR voter votes for Candidate 0.

(c1, a) (c1, a′)

(c0, a) 1,0 0,1

(c0, a′) 1,0 0,1

(a) Non-UCR voter

(c1, a) (c1, a′)

(c0, a) 1,1 1.5,0.5

(c0, a′) 0.5,1.5 1,1

(b) UCR voters

(c1, a) (c1, a′)

(c0, a) 2,1 1.5,1.5

(c0, a′) 1.5,1.5 1,2

(c) All voters

Table 1: Construction of divergence equilibria with one non-UCR voter

Of course,A may consist of more than just the two policiesa, a′ and the non-UCR voter may strictly

prefer some other policies, in which case the violation of UCR for a anda′ may be irrelevant. In order

to makea anda′ relevant, we introduce two additional voters who prefera anda′ to all other policies.

Suppose one voter prefers Candidate 0 while the other prefers Candidate 1 if both candidates choose the

same policy. UCR does not impose any restriction on the choice of off-diagonal elements. Allowing for

some uncertainty about the state of the world, we can generate the vote shares given in Table 1b from the

two UCR-voters. Note that, if candidates were only to play for the support of the two UCR-voters, then

the unique Nash equilibrium (a, a) is on the diagonal, and therefore involves policy convergence.

Now add all three voters together (Table 1c). Note that, without loss, we can exclude actions other

thana anda′ since the two UCR voters rank those belowa anda′.11 Now a, a′ is a strict and unique Nash

equilibrium. We provide a similar construction of the game with winning-probability maximization.

The example is robust in the sense that we could change the preferences of the two UCR-voters

somewhat and still obtain the same result. What matters is primarily that the policies for which UCR

11Thus, a candidate who were to propose another policy would always lose against one who proposes eithera or a′.
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is violated for agent 1 are among the most preferred policiesof sufficiently many of the UCR-voters

so that candidates want to use them. Second, if the candidates’ objective is to maximize their winning

probability, then the non-UCR voter must be pivotal for the election outcome with positive probability.

These are the crucial aspects of the construction of the example, while everything else can easily be

changed without affecting the conclusion that the unique equilibrium featuresdivergence.

5 A Generalized Probabilistic Voting Model

Another way of showing that UCR is “close” to a necessary condition for policy convergence is to

restrict attention to a parametrized class of preferences,and prove that UCR is necessary and sufficient

for convergence in voting games when voters have preferences within this class. We choose this approach

in this section.

5.1 The Classic Model with Microfoundation

In the classical probabilistic voting model (PVM), groups are identified as voters with the same “eco-

nomic” preferences. However, voters within the same group may vote for different candidates because

of what Persson and Tabellini (2000), p. 52 refer to as “ideology.” They write that “one way to motivate

[ideology] is to think about a second policy dimension, orthogonal to fiscal policy, in which candidates

cannot make credible commitments, but set an optimal policyafter the election according to their ide-

ology.” Rather than modeling the second policy dimension explicitly, they operationalize this idea by

adding an additive ideology shock to the economic preferences.

Our objective here is to setup a model that takes this notion of a fixed second policy dimension

seriously. We start with the special case of Euclidean preferences in a two-dimensional policy space, i.e.,

circular indifference curves. In the following section, we consider a modelin which indifference curves

can take any elliptical form, which captures the notion of complementarity between the two dimensions.

Suppose that voters have one of finitely many policy ideal points θ j, j = 1, . . . , J. Let λ j be the

fraction of voters with ideal pointθ j . We assume thatλ is deterministic. Voters with policy preference

θ j are differentiated with respect to their ideal point on the fixed issue. The distribution of ideal points

on fixed issues,δ, for voters in groupj depends on stateω, and is given by the cdfF j(δ − ω) with

corresponding pdff j(δ−ω). That is, the distribution of ideal points on the fixed issuemay differ between

groups, but the shift parameterω affects the preferences of all voters in a uniform way (i.e., a higher value

of ω effectively shifts the fixed-issue ideal points of all voters tothe right). As in the general model,ω

is distributed according to a probability distributionµ. Furthermore, remember thatω capturesall of the

uncertainty in our model: Givenω, we know what the actual distribution of voter ideal points is; for

example, ifω = 0.5, thenF j(δ − 0.5) measures therealized proportionof voters whose fixed issue ideal
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point is belowδ (i.e., there is no two-stage uncertainty in the sense that individual voters’ ideal points

would bedrawnfrom f j(δ − 0.5) in this example).

To save on space, we focus in this section on the case that the candidates’ objective is to maximize

their respective probability of winning; however, with minor adaptations, analogous results also hold for

voteshare maximizing candidates.

We use the following assumption in the current and the following subsection.

Assumption 1

f j is continuously differentiable.

ω has a distribution with strictly positive density on its support, which is a non-empty interval.

The median and the mode of the distribution of eachδ j is obtained atω. Equivalently, Fj(0) = 0.5 and

f ′j (0) = 0, for all j = 1, . . . , J.12

The first two items are fairly innocuous technical assumptions. The third one, which assumes that the

median ideology shock is the same for all groups, is made for convenience, in particular for stating

second order conditions. Since our results are not knife-edge cases, it is clear that this condition could

be relaxed at the expense of more cumbersome algebra. Also, note that the assumption is weaker than

symmetry off j.

If preferences are Euclidean with utility functionuδ,θ(a, c) = −(δ−c)− (θ−a)2, then typej with ideal

point δ on the fixed issue prefers Candidate 0 to Candidate 1 if and only if

(δ j − c0)2 + (θ j − a0)2 < (δ j − c1)2 + (θ j − a1)2. (3)

(3) is equivalent to

δ j <
1
2

[

c0 + c1 +
(a1 − a0)(a1 + a0 − 2θ j)

c1 − c0

]

. (4)

Remember that a higher value ofω shifts the distribution ofδ to the right. For a given value ofω, the

fraction of voters who support Candidate 0 is given by

J
∑

j=1

λ jF j

(

1
2

[

c0 + c1 +
(a1 − a0)(a1 + a0 − 2θ j)

c1 − c0

]

− ω
)

. (5)

Clearly, (5) is continuous and decreasing inω, and goes to 0 forω→ ∞, while it goes to 1 forω→ −∞.

Thus, for any pair of policies (a0, a1), there exists a critical valueω∗(a0, a1) such that the election ends

in a tie ifω = ω∗(a0, a1). If ω < ω∗ then Candidate 0’s win because his vote share strictly exceeds 50%.

The reverse is true, i.e., Candidate 1 wins, ifω ≥ ω∗.
12Remember that the cdf in stateω is F(δ − ω).
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Furthermore, it must be true that each candidate maximizes his vote share in the critical stateω∗. If

this was not true for, say, Candidate 0, then he could simply increase his vote share in stateω∗ and thus

win for sure in all statesω in a neighborhood ofω∗; moreover, since Candidate 0 also wins for all lower

states, his winning probability must increase by this deviation.

Thus, formally, Candidate 0 solves

max
a0

J
∑

j=1

λ jF j

(

1
2

[

c0 + c1 +
(a1 − a0)(a1 + a0 − 2θ j)

c1 − c0

]

− ω∗
)

, (6)

while Candidate 1 solves

min
a1

J
∑

j=1

λ jF j

(

1
2

[

c0 + c1 +
(a1 − a0)(a1 + a0 − 2θ j)

c1 − c0

]

− ω∗
)

, (7)

whereω∗ is the realization at which the candidates’ winning probabilities are 0.5, i.e.,

J
∑

j=1

λ jF j

(

1
2

[

c0 + c1 +
(a1 − a0)(a1 + a0 − 2θ j)

c1 − c0

]

− ω∗
)

= 0.5, (8)

wherea0 anda1 solve (6) and (7), respectively.

The first order conditions of (6) and (7) are

J
∑

j=1

λ j f j

(

1
2

[

c0 + c1 +
(a1 − a0)(a1 + a0 − 2θ j)

c1 − c0

]

− ω∗
)

θ j − a0

c1 − c0
= 0; (9)

−
J

∑

j=1

λ j f j

(

1
2

[

c0 + c1 +
(a1 − a0)(a1 + a0 − 2θ j)

c1 − c0

]

− ω∗
)

θ j − a1

c1 − c0
= 0. (10)

Adding (9) and (10) gives

a1 − a0

c1 − c0

J
∑

j=1

λ j f j

(

1
2

[

c0 + c1 +
(a1 − a0)(a1 + a0 − 2θ j)

c1 − c0

]

− ω∗
)

= 0,

which implies that any solution has the property thata0 = a1. Substitutinga0 = a1 into (8) implies

J
∑

j=1

λ jF j

(c0 + c1

2
− ω∗

)

= 0.5, (11)

By Assumption 1,F j(0) = 0.5, so that equation (11) impliesω∗ = (c0 + c1)/2. This,a0 = a1 and (9)

imply that
J

∑

j=1

λ j f j(0)(θ j − a0) = 0, (12)

Clearly, there exists a unique value ofa that solves (12).
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The second order conditions of (6) and (7) are

J
∑

j=1

λ j













(θ j − a0)2

c1 − c0

f ′(·)
f (·)
− 1













< 0;

J
∑

j=1

λ j













(θ j − a1)2

c1 − c0

f ′(·)
f (·)
− 1













< 0.

At a0 = a1 the second order conditions reduce to the single condition

J
∑

j=1

λ j













(θ j − a0)2

c1 − c0

f ′ (0)
f (0)

− 1













< 0. (13)

Since f ′(0) = 0, condition (13) is satisfied. Thus,a0 = a1 is a local, strict equilibrium. (A pair of

strategies (a0, a1) is a local equilibrium if there exist setsÃ0 and Ã1 such thata0 ∈ int(Ã0) anda1 ∈
int(Ã1), and (a0, a1) is a Nash equilibrium of the game in which candidates are restricted to choose from

Ã0 andÃ1, respectively.)

Sufficient conditions for global optimality are difficult to state, as the left hand side of (13) can be

positive if f ′ is evaluated sufficiently far away from zero; see Banks and Duggan (2005) for a general

treatment of existence problems in the classical probabilistic voting model. However, if we restricta

to be from a sufficiently small interval [α, ᾱ] that containsa0 = a1, then the local equilibrium that we

identified is also guaranteed to be a global equilibrium in the restricted game. Theorem 3 therefore

implies (corresponding to standard results for the standard PVM with additive ideology shocks) thata0,

a1 is the unique Nash equilibrium, pure or mixed, of the restricted game.

Theorem 5 Suppose that Assumption 1 is satisfied. There exists a pure strategy local Nash equilibrium

(formally, there existsαi < ai < ᾱi such that a0, a1 is a Nash equilibrium if the candidates’ strategy

spaces are given by[αi , ᾱi], i = 0, 1.) Moreover, there is policy convergence: a0 = a1 in this local

Nash equilibrium. Furthermore, the equilibrium is the unique local pure strategy Nash equilibrium in

the original (unrestricted) game.

As in the standard PVM, the intervals [αi , ᾱi ] becomes larger (or global), if the type distribution is more

spread out, i.e., iff ′ stays small if we move away from zero. Of course, iff ′ ≡ 0 (i.e., if the distribution

is uniform) then the equilibrium is always global.

5.2 Elliptical Preferences

We now consider preferences for which indifference curves are ellipses rather than circles. Intuitively,

indifference curves that are circles capture preferences where the ideal policya is independent of the

fixed characteristicc. In contrast, consider, for example, elliptical indifference curves for which the
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major axis is the 45 degree line. This corresponds to a situation where the fixed characteristic and the

policy are complements in the following sense: The voter’s ideal policya is the higher, the higher is the

candidate’s fixed characteristic.

For example, consider the following situation: The fixed characteristic measures the general attitude

of the candidate towards cooperation with foreign governments in solving international problems. A

candidate who favors broad international cooperation and consensus building in international organiza-

tions would be denoted as (say) a low type on this dimension, while a candidate who prefers a unilateral

approach and does not care much about the international opinion would be a high type. Candidates are

fixed to their respective (different) positions in that dimension. This assumption appears to be reasonable,

as it is probably very difficult to credibly commit to a particular foreign policy “attitude”.

There is a second dimension that is more concrete and where candidates can commit to a particular

position. For concreteness, think of this dimension as the defense budget. It is quite plausible that the type

of the executive (i.e., the position of a candidate in the first dimension) influences a voter’s preferences

over policy in the second dimension; for example, a voter mayprefer that a more assertive candidate has

a higher (or lower) defense budget than a more cooperative type. In the first case, we would say that

characteristic and policy are complements, in the second case, they are substitutes. Both cases imply that

a voter’s indifference curves are not circles but rather could be captured byellipses whose major axis is

not exactly horizontal or vertical.13

Before we proceed, it is useful to conceptually differentiate between the shape of the indifference

curves and correlation in the distribution of ideal points.So far, we have argued that it is plausible that

a single voter’s preferences over fixed characteristics andflexible policies display complementarity or

substitutability. This effect influences the shape of indifference curves. Conceptually different from this

is correlation in the distribution of ideal points in both dimensions. For example, it may be the case that

many voters who have a preference for “tough-talking” executives also have, on average, a higher ideal

point on the defense budget. Thus, if we were to plot voter ideal points in ac − a-diagram, these ideal

points might display positive correlation. Whether or not there is correlation in ideal points does not

affect our theory much, so we do not need to take a position on thisquestion.

Consider the preferences illustrated in Figure 1 where the two parametersκ1 andκ2 determine the

shape of the indifference curves (κ1 measures the ratio of the two axes, whileκ2 is the angle of rotation).

13As a related example where complementarity between a candidate’s type and the policy choice is plausible, consider

the following example: Suppose candidates differ with respect to their beliefs about the possibility of rehabilitating criminal

convicts. While a lowc candidate believes that rehabilitation is often effective, a highc candidate believes that it does not.

Consequently, if the tough politician is in power, criminals will remain more or less unreformed (whether or not rehabilitation

is in principle possible). Suppose thata corresponds to the amount of money spent on building and maintaining prisons (not

including any rehabilitation expenses). Then, independent of their ideal point, voters would want the candidate who does not

believe in rehabilitation to build more prisons, since absent rehabilitation efforts, this is the better choice than releasing prisoners

early because of a lack of space in prisons. In contrast, if the executive believes in and funds rehabilitation programs,additional

prison space is less useful, and the voter would prefer a lower a.
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Clearly, any preferences with elliptical indifference curves can be represented by the ideal point (δ, θ), κ1
andκ2. In particular, lettingκ1 = 1 produces standard Euclidean preferences, reducing the model to the

standard PVM.

More formally, let

M =















1 κ2

−κ1κ2 κ1















(14)

For x ∈ [0, 1]2 define the norm||x||M = ||Mx||2, where|| · ||2 denotes the Euclidean norm. Let (δ, θ) be a

voter’s ideal point. Then

(c, a) �δ,θ (c′, a′) if and only if ||(c, a) − (δ, θ)||M ≤ ||(c′, a′) − (δ, θ)||M . (15)

It is easy to check that indifference curves are of the form

(c− δ, a− θ)














1+ κ21κ
2
2 κ2(1− κ21)

κ2(1− κ21) κ21 + κ
2
2





























c− δ
a− θ















= ū (16)

The eigenvectors of the matrix in (16) are (−κ2, 1) and (1, κ2) with associated eigenvaluesκ21(1+ κ22) and

1+ κ22. Thus, as indicated in Figure 1 indifference curves are elliptical, with the main axes given by the

above eigenvectors, and the ratio of the length of the axes measured byκ1.

If the major axis has positive slope such as in the left panel,then a voter’s optimal level ofa increases

with c, and we say thatc anda are complements. If, in contrast, the slope of the major axisis negative,

we say thatc anda are substitutes. Formally, ifu(c, a) = −||(c, a) − (δ, θ)||2M represents the preferences,

then
∂2u(c, a)
∂c∂a

= −2(1− κ21)κ2. (17)

Forκ1 > 1 andκ2 > 0 as in the graph, the sign of the cross derivative is positive, indicating complements.

C

A

C

c0                  c1

A

a

a’

κ 1
dd

κ2

1

(δ,θ)

Figure 1: Elliptical Preferences and Violation of UCR
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We next prove that UCR is violated for these preferences. Theviolation of UCR can most easily

be seen in the right panel of Figure 1 (and the argument can clearly be formalized). If both candidates

select policya then the voter prefers Candidate 0. If, instead, both candidates select policya′ then

the voter prefers Candidate 1. The only elliptical preferences that satisfy UCR are those for which the

major or minor axis is horizontal, i.e., whereκ2 = 0. Such preferences are given by a utility function

u(c, a) = −k2(c− δ)2 − (a− θ)2. In this case,u(c, a) ≥ u(c′, a) if and only if u(c, a′) ≥ u(c′, a′).

Directly analyzing the voting game with elliptical indifference curves would be very complicated.

Thus, we transform the policy space such that preferences become Euclidean (in the transformed model)

and thus satisfy UCR. Theorem 3 can then be used to identify possible equilibria and to prove uniqueness

of equilibrium.

We now use Figure 2 to explain this procedure. The detailed mathematical arguments can be found in

the Appendix. The top left panel of Figure 2 depicts the original model. In the standard PVM, individuals

with the sameθ are interpreted as a “group” that has the same “economic” interests (i.e., ideal value of

policy). Members of the same group differ only in their “ideological” preferences captured byδ (i.e.,

their ideal value of the fixed position). In PVMs, it is standard to consider finitely many “groups” (each

with a continuous, possibly group-specific distribution ofideology), and we adopt the same approach.

In Figure 2, there are three “groups” with policy ideal points θ1, θ2 andθ3, and the indifference curves

of one particular type with a policy ideal point ofθ3. We apply a linear transformation (given by matrix

M in (14) above) to the top left panel. As indicated, thex andy-axes coincide with the directions of the

major and minor axes of the ellipses. We apply a rotation, indicated by the curved clockwise arrow, and

at the same time we stretch along they-axis as indicated by the straight arrow pointing northwestuntil

indifference curves become circles. The result of applyingM is depicted in the top right-panel. Note

that thex andy-axes are now horizontal and vertical, while the locus of voter types as well as the set of

feasible policy are skew and no longer form a right angle (because of the stretching).

It is more convenient to analyze the model in the two positions depicted in the middle panels. Both

are obtained by applying rotations to the top right panel. Inthe middle left panel, the candidates’ sets

of feasible policies are vertical lines (and the indifference curves are circles and therefore satisfy UCR).

As a consequence, Theorem 3 applies that in any strict Nash equilibrium equilibrium policies must be

identical, i.e.,a0 = a1. If an equilibrium exists, then second order conditions guarantee strictness, just

like in the standard PVM. Thus, if an equilibrium exists, it must also be unique.

Existence can be shown most easily using the right-middle panel. This corresponds to the PVM from

the previous section, except that the candidates’ feasiblepolicy lines are skew. As indicated in the graph,

the slope of the policy lines is given by 1/β, where

β =
κ2(1− κ21)
√

1+ κ21κ
2
2

. (18)

Note thatβ has exactly the opposite sign of (17). Thus, ifc anda are complements as in Figure 2, then
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Figure 2: Transforming Elliptical Preferences to Euclidean Preferences and Equilibrium

β < 0.

If the main axes of the ellipses in the original mode are horizontal or vertical, i.e., ifκ2 = 0, or if

indifference curves are circles at the outset, i.e.,κ1 = 1, thenβ = 0. In this case, the two middle panels

are identical, and as a consequence,a0 = a1, i.e., there is policy convergence.

Now return to the case ofβ , 0. As we rotate the graph from the middle left panel to the middle right
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panel, the conditiona0 = a1 becomes

ã1 = ã0 −
β

β2 + 1
(c̃1 − c̃0), (19)

where the tilde above each parameter indicates that coordinates are with respect to the axis in the middle

right panel. Equation (19) and Figure 2 imply ˜a0 , ã1 (note that Theorem 3 does not apply in the middle

right panel, since the candidates’ feasible policy lines are skew).

To determine the necessary and sufficient conditions for equilibrium we proceed as in the previous

section, except that we need to adjust for the fact that the feasible policy lines are skew. The resulting

first order conditions are

J
∑

j=1

λ j f j

























c̃0 + c̃1

2
√

1+ κ21κ
2
2

− ω∗

























[

β

2
+ (1+ β2)

θ̃ j − ã0

c̃1 − c̃0

]

= 0; (20)

J
∑

j=1

λ j f j

























c̃0 + c̃1

2
√

1+ κ21κ
2
2

− ω∗

























[

−
β

2
+ (1+ β2)

θ̃ j − ã1

c̃1 − c̃0

]

= 0. (21)

The second order conditions, detailed in (54) and (55) are ofthe form

J
∑

j=1

λ j

(

Γi(c̃0, c̃1, ã0, ã1, θ j)

2(1+ β2)(c̃1 − c̃0 + β(ã1 − ã0)

f ′(·)
f (·)
− 1

)

< 0.

whereΓi is a function of the indicated variables, and the candidatei = 0, 1. One can check that, at the

solution of the first-order conditions,f ′(·) = 0. Hence, the second-order conditions are satisfied, and we

have again at least a local equilibrium.

Finally, we transform the policy space back into its original form. This process is illustrated in the

bottom panel of Figure 2. After the transformation, policies still differ. The line separating supporters

for candidates 0 and 1 is vertical as in the standard model. Recall thatω∗ is determined such that the

winning probabilities are 0.5. After the transformation, the condition is identical to (11) in the previous

section, and henceω∗ = (c0 + c1)/2. The first order conditions (20) and (21) change to

J
∑

j=1

λ j f j(0)













β

2
+

(1+ β2)κ1(1+ κ22)

1+ κ21κ
2
2

θ j − a0

c1 − c0













= 0. (22)

J
∑

j=1

λ j f j(0)













−β
2
+

(1+ β2)κ1(1+ κ22)

1+ κ21κ
2
2

θ j − a1

c1 − c0













= 0. (23)

Condition (19) changes to

a1 − a0 = −
β(1+ κ21κ

2
2)

(1+ β2)κ1(1+ κ22)
(c1 − c0), (24)
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Thus, ifβ < 0, which is the case of complementarity between fixed characteristics and policy depicted in

Figure 2, thena0 < a1 as the right-hand side of (24) is positive in the case. If, instead,β > 0 then fixed

characteristics and policy are substitutes, anda0 > a1.

The arithmetic average ¯a = (a0 + a1)/2 of policiesa0 anda1 has no direct substantive significance in

our model (in particular, it is not theexpectedpolicy, as the candidates’ winning probabilities are usually

different). However, we can use ¯a to show uniqueness of local equilibria as follows. Add equations (22)

and (23) to get
J

∑

j=1

λ j f j(0)













2(1+ β2)κ1(1+ κ22)

1+ κ21κ
2
2

θ j − ā

c1 − c0













= 0. (25)

Since the coefficient of
θ j−ā
c1−c0

is strictly positive, (25) simplifies to

J
∑

j=1

λ j f j(0)(θ j − ā) = 0, (26)

which is identical to (12) (replacinga0 by ā). Thus,ā is exactly the same as the equilibrium policy in a

Euclidean model whereκ1 = 1 or κ2 = 0.14

We now summarize our results. It should be noted that the requirements for existence in Theorem 6

mirror those in Theorem 5 and thus correspond to those in the standard PVM.

Theorem 6 Suppose that Assumption 1 is satisfied and that preferences are given by(15). Then there

existsαi < ai < ᾱi such that(a0, a1) is a Nash equilibrium if the candidates’ strategy spaces aregiven by

[αi , ᾱi], i = 0, 1. Equilibrium policies are given by(24). There is policy divergence, i.e., a0 , a1, unless

indifference curves are circles or the major axis is horizontal or vertical. Moreover, there does not exist

any other local pure strategy Nash equilibrium.

5.3 General Elliptical Preferences

The results of the previous section can be generalized to thecase where bothC andA are multidimen-

sional. In particular, suppose thatC = Rk andA = Rm, and letn = k +m. As above, we consider a finite

collection of groupsθ j ∈ Rm, j = 1, . . . ,K. For each groupj, there is a cumulative distributionF j(δ) on

C.

If preferences are Euclidean, then a voter with ideal position (δ, θ j) ∈ Rn prefers Candidate 0 to

Candidate 1 if||(δ, θ j) − (c0, a0)||2 < ||(δ j , θ j) − (c1, a1)||2, where (ci , ai) ∈ Rn is Candidatei’s position

(including the fixed characteristics). This condition, which generalizes (4), can be rewritten as

k
∑

i=1

δ j,i(c1,i − c0,i) ≤
1
2

















m
∑

i=1

(

(θ j,i − a1,i)
2 − (θ j,i − a0,i)

2
)

+

k
∑

i=1

(c2
1,i − c2

0,i)

















. (27)

14In fact, ā is uniquely determined, and this fact can be used to provide an alternative proof for uniqueness of a local

equilibrium.
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Let F̂ j be the distribution of
∑k

i=1 δ j,i(c1,i − c0,i). Then Candidate 0’s vote share in stateω is

J
∑

j=1

λ j F̂ j

















1
2

















m
∑

i=1

(

(θ j,i − a1,i)
2 − (θ j,i − a0,i)

2
)

+

k
∑

i=1

(c2
1,i − c2

0,i)

















− ω
















, (28)

which is the analogue of (5). Candidate 0 choosesa0 ∈ A to maximize (28), while Candidate 1 chooses

a1 ∈ A to minimize it. By arguments analogous to those in Section 5.1, a0 = a1 in the local equilibrium.

In order to generalize this model to elliptical preferences, let O be an arbitrary orthogonaln × n-

matrix, and letD be ann× n-diagonal matrix with diagonal entriesdi > 0, i = 1, . . . , n. Let M = D · O.

Then, as in Section 5.2, define the norm||x||M = ||Mx||2. A voter with ideal point (δ, θ) now prefers

Candidate 0 to Candidate 1 if||(δ, θ j) − (c0, a0)||M < ||(δ j , θ j) − (c1, a1)||M .

Let < x, y > be the inner product of two vectorsx andy. For arbitraryz ∈ Rn we get

||z||2M = ||Mz||22 =< Mz,Mz>=< D ·Oz,D ·Oz>=< z, (D ·O)t · D ·Oz>

=< z,Ot · Dt · D ·Oz>=< z,O−1 · D2 ·Oz>= ztO−1 · D2 ·Oz.
(29)

Note thatOt = O−1 becauseO is orthogonal, andDt = D sinceD is a diagonal matrix. Thus,A =

O−1 · D2 · O is a self-adjoint matrix. The eigenvalues are given byd2
i , the squares of the diagonal

elements ofD, and the eigenvectors are given byO−1ei , whereei is theith unit vector. To see this, note

thatA ·O−1ei = O−1 · D2ei = O−1d2
i ei = d2

i O−1ei .

Thus, the quadratic form (29) describes a utility function with elliptical indifference contours in a

multidimensional space. The directions of the main axes aregiven by the above eigenvectors, and the

length of the axes are proportional to the eigenvalues, as inSection 5.2. Again, we can apply matrix

M = D · O to transform the elliptical preferences into Euclidean preferences.15 The set of feasible

policies of candidates 0 and 1 are given by the parallel lines

L0 =















M















c0

a















∣

∣

∣

∣

a ∈ Rm















, andL1 =















M















c1

a















∣

∣

∣

∣

a ∈ Rm















.

Since preferences are Euclidean and therefore UCR, the local equilibrium consists of pointszi ∈ Li such

thatz1 − z0 is orthogonal toL0 andL1 (see Figure 2).

In order for a vectorx to be orthogonal toL1 and L2, 0 =< M
(

0
a

)

, x >=<
(

0
a

)

,O−1 · Dx >, for all

a ∈ Rm, which impliesx = D−1 · O
(

c
0

)

, for somec ∈ Rk. Thus, the equilibrium policiesa0 anda1 must

satisfyM
(

c0
a0

)

+ D−1 ·O
(

c
0

)

= M
(

c1
a1

)

, which implies














c1

a1















=















c0

a0















+O−1 · D−2 ·O














c

0















(30)

15To generate formula (14) from Section 5.2 usingD andO, simply define

D =
√

1+ κ22















1 0

0 κ1















andO =
1

√

1+ κ22















1 κ2

−κ2 1















.
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Generalizing the argument from Section 5.2, for preferences to be UCR, there are two possibilities: First,

the indifference curves can be circles (balls), which happens whenD is the identity matrixI , in which

caseO−1 ·D−2 ·O = I . Second, the main axes of the ellipses coincide with the coordinate axes, in which

caseO−1 · D−2 ·O is a diagonal matrix. In both cases,c = c1 − c0 anda0 = a1.

For generalO andD, however,O−1 ·D−2 ·O
(

c
0

)

will no longer be in the linear subspace{(c, 0)|c ∈ Rk}
of Rm, and as a consequencea0 , a1, i.e., we have policy divergence whenever preferences are not UCR.

Existence of local equilibria follows along the same lines as in the two-dimensional case, i.e., we

must ensure that the density function ofF̂ is sufficiently spread out (i.e., its derivative is not too large).

5.4 Comparison of the Classic and the General Spatial Models

One of the main points of interest of the standard PVM is to determine which features of the distribution

of voter preferences influence the equilibrium policy. The central finding of the PVM is that the equilib-

rium policy maximizes a weighted sum of the voters’ economic(i.e., non ideological) utilities,−(θ j−a)2,

where the weights of groupj in the maximization problem is determined both by the group sizeλ j , and

by how many members of groupj can be moved easily, which is determined byf j(0). The same deter-

minants influence equilibrium policy in the general spatialmodel. In particular, policy ¯a solves exactly

the same optimization problem, and existence of equilibrium can be proved along the same lines as in

the standard model (once the setting is transformed as explained in the previous section).

The key difference between the classical and the general spatial modelsis that, in the classical model,

both candidates solve the same optimization problem and thus their equilibrium policies coincide. In con-

trast, the optimization problems of the two candidates differ with general preferences, resulting in policy

divergence. The extent of policy divergence increases in the ex-ante difference between candidates. In

practice, the ex-ante differences between candidates may increase if parties are morepolarized on the

dimension captured by the fixed characteristic,c. In contrast, the difference between candidates’ fixed

characteristics are irrelevant for policy choice in the standard model.

The model with general elliptical preferences also indicates another aspect in which the standard

PVM produces special results. Consider the effect of a change in the voter preference distribution over

the fixed characteristic, say, an ideology shift inω that favors the Democratic candidate. In a standard

PVM, this shift does not affect the equilibrium policies that both candidates choose (and since both

choose the same position, it also does not affect the expected policy). The only effect of a change in

the electorate’s distribution of ideologies is a change in the winning probabilities of the Democratic

and Republican candidates. In contrast, when indifference curves are elliptical, then a change in the

ideological distribution of the electorate also affects the expected flexible policy.
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6 Conclusion

In this paper, we develop a model of candidate competition that is more general than the previous liter-

ature on this subject, as we allow for voters to care about both the candidates’ fixed characteristics and

their chosen policy platforms in an arbitrary way. The framework thus contains all existing frameworks

of candidate competition — such as the spatial model or the probabilistic voting model – as special

cases. Also, by interpreting some “core convictions” of thecandidates as fixed characteristics, while

candidates can freely choose their positions on other issues, our model provides a bridge between the

classical Downsian model in which candidates can choose their platform without any restrictions, and

the citizen candidate model in which candidates cannot commit to any policy that is not their ideal policy.

The main contribution of the model is twofold. First, it enhances our understanding of what drives

certain features of equilibrium in existing models of candidate competition, notably policy convergence.

Specifically, we show that just assuming that candidates areoffice-motivated and compete with each

other does not, by itself, produce policy convergence. Rather, this conclusion follows from the interplay

of office motivation and a certain “independence” of fixed characteristics and flexible policy positions

in the voters’ utility functions. We formalize this form of “independence” by identifying the class of

UCR preferences for which equilibrium policy convergence arises even when candidates differ in fixed

characteristics (Theorem 3). Conversely, Theorem 4 shows that UCR preferences are also, in a certain

sense, necessary for convergence: Even if only one voter hasnon-UCR preferences, there exists a voting

game in which the unique and strict Nash equilibrium features policy divergence.

For the most general setup, we obtain characterization results — they tell us how an equilibrium

looks like or cannot look likeif it exists. Since our model contains a very general class of models,

including some for which no pure strategy equilibrium exists, it is effectively impossible to identify

necessary and sufficient conditions that guarantee existence of a pure strategy strict equilibrium within

the general framework. Nevertheless, we know from previousliterature that an equilibrium exists for

several subclasses such as the one-dimensional spatial model and the probabilistic voting model. Thus,

our characterization results are not vacuous, and they helpus to understandwhy policy convergence

obtains in these models.

The second major contribution of our paper is to identify an interesting class of models in which a

candidate’s competence in a policy area affects the voter’s preferred policy from the candidate, which

yields non-UCR preferences in a natural way. The model that we present captures the notions of comple-

mentarity between fixed and flexible positions, and is a generalization of the probabilistic voting model.

The model is essentially as tractable as the probabilistic voting model in that there is (at least under

certain additional, relatively mild conditions) a unique and strict Nash equilibrium that can easily be

characterized. However, we show that the equilibrium of thegame between the candidates features pol-

icy convergenceonly in the special case that is the PVM, while generically, thereis policy divergence in

equilibrium. Also, comparative statics effects (i.e., which primitives influence equilibrium policy choice,
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and which ones do not) differ substantially between the generalized model and the PVM.

Our results, in particular for the class of models where voters have non-UCR preferences, open sev-

eral interesting avenues for future research. First, one can focus more closely on particular applications,

such as we do in Krasa and Polborn (2010b), where we formalizethe notion of issue-ownership, first

informally formulated by Petrocik (1996) in the political science literature. Specifically, we consider a

setting in which the candidates differ in their ability to produce two public goods (say, ceterisparibus,

one candidate has an advantage in supplying national security, while his opponent is better in dealing

with the economy) and can propose how to allocate the budget to these two areas. Since the candidates’

production levels of the two goods will generally be different even if they propose the same financial

budget allocation, it is easy to see that the implied voter preferences violate UCR.

Second, one can analyze the question of candidate selectionin more detail. In the present paper,

candidates are exogenously endowed with certain fixed characteristics. It may be interesting to add a

prior stage to the game where candidates are chosen by parties and their members from two, possibly

distinct, sets of available candidates. Interesting questions include how party members, who arguably are

primarily interested in policy outcomes rather than in winning per se, choose among potential candidates

knowing that these candidates will then go on and choose a policy for the general election in a way to

maximize their respective probability of winning.
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7 Appendix

Proof of Theorem 1. If a0 = a1, thenc0 = c1 and reflexivity of preferences imply that all voters are

indifferent between the candidates. Thus, the winning probabilities as well as votes shares are 0.5. Let

(a0, a1) be a Nash equilibrium. If Candidatej’s payoff were strictly less than 0.5 in this equilibrium, then

Candidatej could increase the payoff to 0.5 by using the same policy as the other agent. However, since

W1(ω, a0, a1) = 1 −W0(ω, a0, a1) this implies
∫

W j(ω, a0, a1) dµ(ω) = 0.5, i.e., in equilibrium (a0, a1)

each candidate’s winning probability is 0.5. The same argument holds for the vote shares (simply replace

W by V).

We now prove that (a1, a1) is Nash equilibrium. Suppose by way of contradiction that there exists

a deviation ˜ai that makes Candidatei strictly better off. If i = 0 then Candidate 0 would have used ˜a0

againsta1 thereby increasing his payoff, resulting in a winning probability that is strictly greater than 0.5.

This contradicts the assumption that (a0, a1) is a Nash equilibrium (as the candidates’ winning probability

in (a0, a1) is 0.5). Thus, we can assume thati = 1, i.e.,ã1 played againsta1 results in a ex-ante winning

probability that is strictly greater than 0.5. However,c0 = c1 implies thatW0(ω, a0, a1) = W1(ω, a1, a0).

Thus, 0.5 <
∫

W1(ω, a1, ã1) dµ(ω) =
∫

W0(ω, ã1, a1) dµ(ω) ≤ 0.5, where the last inequality follows since

(a0, a1) is a Nash equilibrium with winning probabilities 0.5. Thiscontradiction proves that (a1, a1) is

a Nash equilibrium. Similarly, it follows that (a0, a0) is a Nash equilibrium. Again, the same argument

applies to votes share maximization.

Now suppose that (a0, a1) is a strict Nash equilibrium. Ifa0 , a1 then the previous argument implies

that (a0, a0) is also a Nash equilibrium resulting in the same winning probability, which contradicts the

assumption that (a0, a1) is strict. Thus,a0 = a1 = ā. Suppose by way of contradiction that there exists

another pure strategy Nash equilibrium (a′, a′), wherea′ , ā (because of the first part of the proof we

can assume that both candidates use the same strategy). Since the equilibrium (¯a, ā) is strict we get

0.5 =
∫

W0(ω, ā, ā) dµ(ω) >
∫

W0(ω, a′, ā) dµ(ω). Thus,W0 +W1 = 1 implies
∫

W1(ω, a′, ā) dµ(ω) >

0.5. Hence, (a′, a′) is not a Nash equilibrium since there exists a profitable deviation for Candidate 1, a

contradiction. The same contradiction obtains for vote share maximization.

Finally, suppose that there exists a mixed strategy equilibrium. Without loss of generality we can

assume that Candidate 0 mixes with strictly positive probability. The prove also works the same way of

vote-share maximization. The argument in the previous paragraph implies that
∫

W1(ω, a, ā) dµ(ω) ≥ 0.5

for all a ∈ A, and that the inequality is strict fora , ā. Similarly,
∫

W0(ω, ā, a) dµ(ω) ≥ 0.5 for all a ∈ A.

The first inequality and the fact that Candidate 0 mixes implythat by choosinga1 = ā with probability 1,

Candidate 1 gets a winning probability that is strictly greater than 0.5. The second inequality implies that

Candidate 0’s winning probability must be at least 0.5. Thus, the winning probabilities add to a number

strictly greater than 1, a contradiction. Hence, there doesnot exist a mixed strategy equilibrium.
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Proof of Theorem 2. We start by proving that statement 2 implies statement 1. Since f andg are

continuous, the implied preferences are continuous. In remains to prove that UCR holds. Let (c, b) �
(c′, b). Theng( f (c), b) ≥ g( f (c′), b). Sinceg is strictly monotone in the first argument this implies

f (c) ≥ f (c′). Again, strict monotonicity impliesg( f (c), b′) ≥ g( f (c′), b′), which implies (c, b′) � (c′, b′),

i.e., UCR holds.

We now prove that statement 1 implies statement 2. Define preferences�C onC as follows:c �C c′

if there existsa ∈ A with (c, a) � (c′, a). Note that these preferences are well defined. In particular,

the ability to uniformly rank candidates in stateω implies that (c, a′) � (c′, a′) for anya′ ∈ A. Further

preferences�C are complete since� are complete and therefore either (c, a) � (c′, a) or (c′, a) � (c, a)

must be satisfied. In the first casec �C c′ while in the second casec′ �C c. Transitivity of�C follows

also immediately from transitivity of�. In particular, suppose thatc �C c′ andc′ �C c′′. Then for any

a ∈ A we get (c, a) � (c′, a) and (c′, a) � (c′′, a). Thus, (c, a) � (c′′, a), which implies thatc �C c′′.

SinceC is a separable metric space and since preferences are continuous, there exists a continuous

utility function f that describes preferences�C, i.e., f (c) ≥ f (c′) if and only if c �C c′. Let Y = f (C)

andc, c′ ∈ f −1(y) for somey ∈ Y. We now define preferences onY × A as follows: (y, a) �′ (y′, a′) if

and only if there existc ∈ f −1(y) andc′ ∈ f −1(y′) with (c, a) � (c′, a′).

To show that these preferences are well defined, let ˆc ∈ f −1(y) andĉ′ ∈ f −1(y′). We must show that

(ĉ, a) � (ĉ′, a′). f (c) = f (ĉ) and f (c′) = f (ĉ′) and the fact thatf is a utility function for�C implies that

(c, a) ∼ (ĉ, a) and (c′, a′) ∼ (ĉ′, a′). Thus, (ĉ, a) ∼ (c, a) � (c′, a′) ∼ (ĉ′, a′).

Completeness of preferences�′ follows immediately from completeness of�. To prove transitivity,

let (y, a) �′ (y′, a′) and (y′, a) �′ (y′′, a′). This implies (c, a) � (c′, a′) and (ĉ′, a′) � (c′′, a′′), where

c ∈ f −1(y), c′, ĉ′ ∈ f −1(y′) andc′′ ∈ f −1(y′′). Sincec′, ĉ′ ∈ f −1(y′) we get (c′, a′) ∼ (ĉ′, a′). Thus,

transitivity of� implies (c, a) � (c′′, a′′), and therefore (y, a) �′ (y′′, a′′).

Next, we show continuity of�′. Let (yi , ai), i ∈ N be a sequence with limit (y, a), and let (ȳ, ā) ∈ Y×A,

such that (yi , ai) �′ (ȳ, ā) for all i ∈ N. We must show that (y, a) �′ (ȳ, ā).

For eachi ∈ N let ci ∈ f −1(yi ). SinceC is compact, there exists a subsequencecik, k ∈ N that

converges. Letc = limk→∞ cik. Continuity of f implies f (c) = limk→∞ f (cik) = limk→∞ yik = y. Since

(yik , aik) �′ (ȳ, ā) if follows that (cik , aik) � (c̄, ā) for somec̄ ∈ f −1(ȳ). Continuity of preferences�
implies that (c, a) � (c̄, ā). Hence (y, a) �′ (ȳ, ā).

Similarly, it follows that if (yi , ai) �′ (ȳ, ā) for all i ∈ N then (y, a) �′ (ȳ, ā). Thus, preferences�′ are

continuous.

Next, note that preferences�′ are strictly monotone iny. In particular, let (y, a), (y′, a) ∈ Y × A with

y > y′. Let c ∈ f −1(y) andc′ ∈ f −1(y′). Becausef is a utility function describing preferences onC it

follows thatc ≻C c′. This, in turn implies (c, a) ≻ (c′, a), and therefore (y, a) ≻′ (y′, a).

BecauseY×A is again a separable metric space, and the preferences�′ onY×Aare continuous, there
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exists a utility functiong that describes preferences�′. Strict monotonicity of preferences iny implies

thatg is strictly monotone iny. Finally, u(a) = g( f (c), a) is a continuous utility function that describes

preferences�.

Proof of Theorem 3. Note that if preferences are UCR then (c0, a) �ℓω (c1, a) if and only if (c0, a′) �ℓω
(c1, a′) for any citizenℓ and for any stateω ∈ Ω. Thus, citizens’ voting behavior is the same if both

candidates choosea or if both choosea′. Thus, the winning probabilities as well as vote shares do not

change for candidatesj = 1, 2, i.e.,

W j(ω, a, a) =W j(ω, a′, a′), andV j(ω, a, a) = V j(ω, a′, a′), for all a, a′ ∈ A. (31)

We prove the result for the case where candidates maximize the winning probability. To get the prove

for expected vote-share maximizing one only needs to replace Wi(·) by Vi(·).

Suppose by way of contradiction that there exists a strict Nash equilibrium (a0, a1) with a0 , a1.

Then
∫

W0(ω, a0, a1) dµ(ω) >
∫

W0(ω, a1, a1) dµ(ω), (32)
∫

W1(ω, a0, a1) dµ(ω) >
∫

W1(ω, a0, a0) dµ(ω). (33)

(32), (31) , and the fact thatW0 +W1 = 1 imply
∫

W1(ω, a0, a1) dµ(ω) <
∫

W1(ω, a1, a1) dµ(ω) =
∫

W1(ω, a0, a0) dµ(ω), (34)

But (34) contradicts (33). Thus, in any strict Nash equilibrium a0 = a1 = a.

Next, we prove uniqueness of the Nash equilibrium (a, a). First, suppose that there exists another pure

strategy Nash equilibrium (a0, a1). Since the Nash equilibrium (a, a) is strict, it follows thata0, a1 , a.

Further,
∫

W1(ω, a, a) dµ(ω) >
∫

W1(ω, a, a1) dµ(ω) and
∫

W0(ω, a, a) dµ(ω) >
∫

W0(ω, a0, a) dµ(ω).

SinceW0 +W1 = 1 we get
∫

W0(ω, a, a) dµ(ω) <
∫

W0(ω, a, a1) dµ(ω); and (35)
∫

W1(ω, a, a) dµ(ω) <
∫

W1(ω, a0, a) dµ(ω). (36)

(35), (36) and the fact that (a0, a1) is a Nash equilibrium implies
∫

W0(ω, a, a) dµ(ω) <
∫

W0(ω, a, a1) dµ(ω) ≤
∫

W0(ω, a0, a1) dµ(ω); (37)
∫

W1(ω, a, a) dµ(ω) <
∫

W1(ω, a0, a) dµ(ω) ≤
∫

W0(ω, a0, a1) dµ(ω). (38)

31



SinceW0 +W1 = 1, adding (37) and (38) yields a contradiction. Thus, the Nash equilibrium is unique

among all pure strategy equilibria. The remainder of the proof, that there is no mixed strategy equilib-

rium, is identical to the last step in the proof of Theorem 1.

Proof of Theorem 4. Since one individual has non-UCR preferences, there exist policies a, a′ such

that (c0, a) ≻ u(c1, a) and (c0, a′) � (c1, a′). If all preferences are strict, we get the cases for the person’s

voting behavior listed in Table 2.

(c1, a) (c1, a′)

(c0, a) 1,0 0,1

(c0, a′) 1,0 0,1

(a) Case 1

(c1, a) (c1, a′)

(c0, a) 1,0 1,0

(c0, a′) 1,0 0,1

(b) Case 2

(c1, a) (c1, a′)

(c0, a) 1,0 1,0

(c0, a′) 0,1 0,1

(c) Case 3

(c1, a) (c1, a′)

(c0, a) 1,0 0,1

(c0, a′) 0,1 0,1

(d) Case 4

Table 2: Possible cases for non-UCR preferences

Without loss of generality assume thatc1 > c0. Let v : A → R with v(a) > v(a′) > v(a′′) for all

a′′ ∈ A \ {a, a′}, andv(a) − v(a′) > c1 − c0. Similarly, let ṽ : A → R with ṽ(a′) > ṽ(a) > ṽ(a′′) for all

a′′ ∈ A \ {a, a′}, andṽ(a′) − ṽ(a) > c1 − c0. Consider the following four types of UCR voters, described

by their utility functions.

Type (a, c0): u(â, c) = v(â) − |c− c0|.

Type (a, c1): u(â, c) = v(â) − |c− c1|.

Type (a′, c0): u(â, c) = ṽ(â) − |c− c0|.

Type (a′, c1): u(â, c) = ṽ(â) − |c− c1|.

If one candidate proposesa while the other proposesa′, then each of these four types votes for the

candidate that offers the most preferred policy choice. If one candidate offersa or a′ while the other

offers an policya′′ ∈ A \ {a, a′}, then all voters will support the candidate who offersa or a′. Finally, if

both candidates proposea or both candidate proposea′, then voters will support the candidate according

to their fixed characteristic. That is types (a, c0) and (a′, c0) vote for candidate 0, while (a, c1) and (a′, c1)

vote for candidate 1 (note that since no voter abstains maximizing the number of votes is equivalent to

maximizing the vote share).

Now consider case 1. Suppose there are two statesΩ = {ω1, ω2} that are equally likely, and two voters

other than the non-UCR type. In stateω1 these two voters are of type (a, c0) and (a, c1), respectively. In

stateω2 they are of type (a, c0) and (a′, c1). This generates exactly the payoffs in Table 1, wherea, a′ is

the strict Nash equilibrium.
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In case 2, we change the types to (a′, c0), (a′, c1) in stateω1, and (a, c0), (a′, c1) in stateω2. The

resulting payoff matrix is given in Table 3 anda, a′ is again the strict Nash equilibrium both when

maximizing the winning probability or the vote share. We canuse the same types in the two states to

generate the expected vote share for case 3 in the table, where (a, a′) is again the strict Nash equilibrium.

In case 4, we use the same types as in case 1.

(c1, a) (c1, a′)

(c0, a) 2,1 1.5,1.5

(c0, a′) 2.5,0.5 1,2

(a) Case 2

(c1, a) (c1, a′)

(c0, a) 2,1 1.5,1.5

(c0, a′) 1.5,1.5 1,2

(b) Case 3

(c1, a) (c1, a′)

(c0, a) 2,1 1.5,1.5

(c0, a′) 0.5,2.5 1,2

(c) Case 4

Table 3: Expected votes after UCR voters are added

Next, consider the game in which candidate maximize the winning probability. We add the same

UCR types as in the game with vote share maximization. The resulting payoff matrices are given in

table 4. If follows immediately that (a, a′) is the strict Nash equilibrium.

(c1, a) (c1, a′)

(c0, a) 1,0 1
2,1

2

(c0, a′) 1
2,1

2 0,1

(a) Case 1

(c1, a) (c1, a′)

(c0, a) 1,0 1
2,1

2

(c0, a′) 1,0 0,1

(b) Case 2

(c1, a) (c1, a′)

(c0, a) 1,0 1
2,1

2

(c0, a′) 1
2,1

2 0,1

(c) Case 3

(c1, a) (c1, a′)

(c0, a) 1,0 1
2,1

2

(c0, a′) 0,1 0,1

(d) Case 4

Table 4: Payoff matrix for winning probability maximization

Next, consider the case where (c0, a′) ∼ (c1, a) for the voter with the non UCR preferences. Then

in all four cases we change the probabilities of statesω1 andω2 to 0.6 and 0.4, respectively to get a

strict equilibrium. For policiesa′, a′, the non-UCR candidate is indifferent, and therefore abstains. The

resulting expected vote shares are provided in Table 5 (case3 is left out since it is identical to case 1).

(c1, a) (c1, a′)

(c0, a) 2
3, 1

3
1.6
3 ,1.4

3

(c0, a′) 1.4
3 ,1.6

3
1
2,1

2

(a) Case 1

(c1, a) (c1, a′)

(c0, a) 2
3, 1

3
1.6
3 ,1.4

3

(c0, a′) 2.4
3 ,0.6

3
1
2,1

2

(b) Case 2

(c1, a) (c1, a′)

(c0, a) 2
3, 1

3
1.6
3 ,1.4

3

(c0, a′) 0.4
3 ,2.6

3
1
2,1

2

(c) Case 4

Table 5: Expected vote shares when (c0, a′) ∼ (c1, a′) for the non UCR voter

In all four cases (a, a′) is again the unique Nash equilibrium. In the case of winningprobability

maximizing (a, a′) is again the strict Nash equilibrium. The payoff matrices resemble those in table 4,
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except that for strategies (a, a′) the winning probabilities are 0.6 and 0.4, respectively. If strategies are

(a′, a) then in cases 1 and 3 the winning probabilities are 0.4, and 0.6.

Similar constructions also apply if the non UCR voter is indifferent between (c0, a) and (c1, a′) or

(c0, a′) and (c1, a).

7.1 Derivation of Equations Used in Section 5.2

To solve for the equilibrium we proceed as follows. We first transforming the coordinates usingM,

which results in indifference curves that are circles. We then rotate the coordinates such that the fixed

characteristic,c, is again on the horizontal axis. This can be done by applyingthe matrix

O =























1√
1+κ21κ

2
2

− κ1κ2√
1+κ21κ

2
2

κ1κ2√
1+κ21κ

2
2

1√
1+κ21κ

2
2























(39)

Note that

O · M ·














c

0















=



















c
√

1+ κ21κ
2
2

0



















, andO · M ·














0

a















=
a

√

1+ κ21κ
2
2















κ2(1− κ21)

κ1(1+ κ22)















(40)

For anyc anda let

ξC(c) = c
√

1+ κ21κ
2
2, and ξA(a) =

aκ1(1+ κ22)
√

1+ κ21κ
2
2

(41)

Let c̃i = ξ(ci), for candidatesi = 0, 1, andã = ξA(a). Defineβ by (18). Then (40) implies that we

have a new voting game in which Candidatei can choose policies (˜ci + βã, ã), and voters have Euclidean

preferences over (˜c, ã).

Voter type (δ j , θ j) in the original voting game, corresponds to type (δ̃ j + βθ̃ j , θ̃ j) in the transformed

game, wherẽδ = ξC(δ) andθ̃ j = ξA(θ j). In the transformed game indifferences curves are circles. Thus,

(δ j , θ j) preferes Candidate 0 to Candidate 1 if and only if

(δ̃ j + βθ̃ j − c̃0 − βã0)2 + (θ̃ j − ã0)2 > (δ̃ j + βθ̃ j − c1 − βã1)2 + (θ̃ j − ã1)2. (42)

(42) is equivalent to

δ̃ j <
1
2















(c̃1 + βã1)2 − (c̃0 + βã0)2 + ã2
1 − ã2

0 − 2θ̃ j(ã1 − ã0)

c̃1 − c̃0 + β(ã1 − ã0)
− 2βθ̃ j















,

which implies

δ j <
1

2
√

1+ κ21κ
2
2















(c̃1 + βã1)2 − (c̃0 + βã0)2 + ã2
1 − ã2

0 − 2θ̃ j(ã1 − ã0)

c̃1 − c̃0 + β(ã1 − ã0)
− 2βθ̃ j















.
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The optimization problems of candidates 0 and 1 are therefore

max
ã0

J
∑

j=1

λ jF j

























1

2
√

1+ κ21κ
2
2















(c̃1 + βã1)2 − (c̃0 + βã0)2 + ã2
1 − ã2

0 − 2θ̃ j(ã1 − ã0)

c̃1 − c̃0 + β(ã1 − ã0)
− 2βθ̃ j















− ω∗

























, (43)

min
ã1

J
∑

j=1

λ jF j

























1

2
√

1+ κ21κ
2
2















(c̃1 + βã1)2 − (c̃0 + βã0)2 + ã2
1 − ã2

0 − 2θ̃ j(ã1 − ã0)

c̃1 − c̃0 + β(ã1 − ã0)
− 2βθ̃ j















− ω∗

























. (44)

In equilibriuma0 anda1 must satisfy (43) and (44) andω∗ must solve

J
∑

j=1

λ jF j

























1

2
√

1+ κ21κ
2
2















(c̃1 + βã1)2 − (c̃0 + βã0)2 + ã2
1 − ã2

0 − 2θ̃ j(ã1 − ã0)

c̃1 − c̃0 + β(ã1 − ã0)
− 2βθ̃ j















− ω∗

























= 0.5. (45)

Let

k(ã0, ã1) =
(c̃1 + βã1)2 − (c̃0 + βã0)2 + ã2

1 − ã2
0 − 2θ̃ j(ã1 − ã0)

c̃1 − c̃0 + β(ã1 − ã0)
, and K =

1

2
√

1+ κ21κ
2
2

Then the first order conditions are

J
∑

j=1

λ j f j

(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

K

[−2β(c̃0 + βã0) − 2ã0 + 2θ̃ j + k(ã0, ã1)

c̃1 − c̃0 + β(ã1 − ã0)

]

= 0; (46)

−
J

∑

j=1

λ j f j

(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

K

[−2β(c̃1 + βã1) − 2ã1 + 2θ̃ j + k(ã0, ã1)

c̃1 − c̃0 + β(ã1 − ã0)

]

= 0. (47)

Suppose ˜a0 andã1 satisfy condition (19) discussed in the main text. If, in addition ã0 andã1 satisfy (46)

thenã0 andã1 also satisfy (47). Substituting (19) into (46) yields

J
∑

j=1

λ j f j

























c̃0 + c̃1

2
√

1+ κ21κ
2
2

− ω∗

























(1+ β2)

2
√

1+ κ21κ
2
2

[

β

2
+ (1+ β2)

θ̃ j − ã0

c̃1 − c̃0

]

= 0, (48)

which, using the definition of ˜ci , ãi andθ̃i is equivalent to

J
∑

j=1

λ j f j

(c0 + c1

2
− ω∗

)

[

β

2
+ (1+ β2)

ξA(θ j − a0)

ξC(c1 − c0)

]

= 0. (49)

(45) simplifies to
J

∑

j=1

λ jF j

(c0 + c1

2
− ω∗

)

= 0.5, (50)

which implies thatω∗ = (c0 + c1)/2.
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Continuity of (49) ina0 immediately implies that there exists a solution. To geta1 we use the fact

that ã0 = ξA(a0) and then apply (19) to get ˜a1. Finally, a1 = ξ
−1
A (ã1), implies condition (24).

Next, we derive the second order condition. The derivative of the left-hand side of (46) with respect

to ã0 is

J
∑

j=1

λ j f
′
j

(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

K

(

∂k(ã0, ã1)
∂ã0

)2

+

J
∑

j=1

λ j f j

(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

K

(

∂2k(ã0, ã1)

∂2ã0

)

.

(51)

Next,
∂2k(a0, a1)

∂2a0
= − 2(1+ β2)

c̃1 − c̃0 + β(ã1 − ã0)
+

1+ β
c̃1 − c̃0 + β(ã1 − ã0)

∂k(ã0, ã1)
∂ã0

(52)

At any critical value ofa0, (46) must be satisfied. Thus,

J
∑

j=1

λ j f j

(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

K
1+ β

c̃1 − c̃0 + β(ã1 − ã0)
∂k(ã0, ã1)
∂ã0

= 0. (53)

If â0 andâ1 satisfy (19) then ˆa0 > â1 and

c̃1 − c̃0 + β(â1 − â0) =
1

1+ β2
(c̃1 − c̃0) > 0.

Hence there existsa < â1 < â0 < ā such that ˜c1 − c̃0 + β(ã1 − ã0) > 0 for anyã0, ã1 ∈ [a, ā].

As a consequence, (51), (52), and (53) imply that the second order condition is

J
∑

j=1

λ jK















f ′j
(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

(

∂k(ã0, ã1)
∂ã0

)2

− f j

(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
) 2(1+ β2)

c̃1 − c̃0 + β(ã1 − ã0)















< 0,

which is equivalent to

J
∑

j=1

λ j























f ′j
(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

f j

(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

(

−2β(c̃0 + βã0) − 2ã0 + 2θ̃ j + k(ã0, ã1)
)2

(

2(1+ β2)
)(

c̃1 − c̃0 + β(ã1 − ã0)
) − 1























< 0, (54)

where the last inequality holds since ˜c1 − c̃0 + β(ã1 − ã0) > 0.

Similarly, the second order condition for (44) is

J
∑

j=1

λ j























f ′j
(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

f j

(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

(

−2β(c̃0 + βã1) − 2ã1 + 2θ̃ j + k(ã0, ã1)
)2

(

2(1+ β2)
)(

c̃1 − c̃0 + β(ã1 − ã0)
) − 1























< 0. (55)

Both second order conditions are satisfied at the solutions of the first order conditions. In particular,

f ′j
(

K
(

k(ã0, ã1) − 2βθ̃ j
)

− ω∗
)

= f ′j

(c0 + c1

2
− ω∗

)

= f ′j (0) = 0,
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which implies that the left-hand sides of (54) and (55) are−
∑J

j=1 λ j < 0. Thus, we have a local equilib-

rium that is strict.

We next show that (a0, a1) is characterized by (19) and (49) is the unique equilibriumpure or mixed.

In particular, we change coordinates, by using the orthogonal matrix

D =























1√
1+β2

− β√
1+β2

β√
1+β2

1√
1+β2























(56)

BecauseD is a rotation, the indifference curves of voters remain circles. In the previous voting game,

policy choices where on lines of the form (˜ci + βa, a). Now note that after applyingD the lines on which

policies are chosen are vertical. Next, (19) implies

D ·




























c̃1 + βã1

ã1















−














c̃0 + βã0

ã0





























= D ·
















1
1+β2 (c̃1 − c̃0)

− β

1+β2 (c̃1 − c̃0)

















=



















1√
1+β2

0



















.

Thus, both candidates choose the same policy in the transformed voting game. Further, the second

order conditions imply that the equilibrium is strict. Since preferences are circles, they are UCR. As a

consequence, Theorem 3 implies that the equilibrium in the transformed voting game is unique. Hence

(ã0, ã1) is the unique equilibrium in the voting game with fixed positions c̃i and feasible policy lines

(c̃i + βa, a).

We next show that the arithmetic mean of the candidates’ policiesā = (a0 + a1)/2 is independent of

κ1 andκ2. In particular, using (19) to substitutea0 for a1 in (47) yields

J
∑

j=1

λ j f j

























c̃0 + c̃1

2
√

1+ κ21κ
2
2

− ω∗

























(1+ β2)

2
√

1+ κ21κ
2
2

[

−
β

2
+ (1+ β2)

θ̃ j − ã1

c̃1 − c̃0

]

= 0. (57)

Adding (48) and (57) yields

J
∑

j=1

λ j f j

























c̃0 + c̃1

2
√

1+ κ21κ
2
2

− ω∗

























(1+ β2)2

2
√

1+ κ21κ
2
2

[

2θ̃ j − (ã0 + ã1)

c̃1 − c̃0

]

= 0. (58)

Substitutingā for (a0+ a1)/2, applying functionsξA andξC, and eliminating constants, (58) simplifies to

J
∑

j=1

λ j f j

(c0 + c1

2
− ω∗

)

[

θ j − ā

c1 − c0

]

= 0. (59)

Thus, the solution ¯a of (59) is independent ofκ1 andκ2.
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