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The Rank-Frequency Form of Zipf's Law

BRUCE M. HILL*

Suppose that there are K regions in a country, with IN; people and M;
cities in the fth region. Let N, be large, M;: random, given N;, and such
that the distribution of M,-N:-_I, given Ny, canverges to a fimiting distri-
bution £, with F(x}~ Cxr as x — 0, v >> 0. Let L) be the size afthe rth
largest city in the country, if,-given M; and N, there is a Bose-Einstein
allocatian of the N:peaple to the M, cities In region /, independently for
‘the various regions, then a ptat of LI} against r will be approximataly
praportionat to r~ 4%l far 1 + o = =4,

1. INTRODUCTION AND SUMMARY

This article presents a theoretical derivation of the
rank-frequency form of Zipf's Law based on a Boge-

Einstein form of the classical occupancy model, with the.

additional feature that the number of cells is itself
random. By the rank-frequency form of Zipf's Law we
mean a relationship in which the rth largest of a set of
quantities is in some specified sense approximately
proportional to r~¢+e} for some & > 0, with & < 1 being
the case of greatest interest. In many different areas it is
common that a plet of frequency against rank yields a
surprisingly close fit to such a law. For example, a plot
against r of the population of the rth largest city [1], or
of the income of the rth richest unit (the Pareto Law
[6]), or of the number of articles on a given subject in
the journal having the rth largest number of such artieles
[8], all seem to fit the Zipf form. In his book .[1}] Zipf
presents a massive array of graphs drawn from a great
many areas including, besides those already mentioned,
linguistics, music, warfare and several others, which also
seem to fit such a law surprisingly well. Sometimes, of
course, there are substantial discrepancies, and what is
surprising to one is not. to another." Nevertheless it seems
appropriate to inquire whether a law of such apparent
universality might not arise from a simple probabilistic
mechanism. Earlier work of interest in this connection
was done by Yule [10], Simon [8] and Mandelbrot
[5, 6].
The present work is an outgrowth of my earlier work
. on the generie-specific form of Zipf’s Law [3], where by
the generie-specific form we mean that the proportion of
genera with exactly s species is in some specified sense
approximately proportional to s~<t*) for some & > 0.
The two forms of Zipf’s Law are closely related, and it is
shown later that a modification of my original model for

# Bruee M. Hill is professar, Department of Statistica, University of Michigan,
Ann Arbor, Mish. 48104. The substanee of this article was an invited paper at the
annual meeting of the American Statistical Association at Colorada State Univer-
sity, August 1971. The author is grateful to Richard Olshen for helpful comments.

I Any formal statistical test of gondness of fit seema aut af the questian, given
the quantity and nature of the data, even if the philasephieal vwalidity of such
tests were agreed upon.,

the generic-specific form yields the rank-frequency form
as well. For completeness and unity, the basic models
and their implications will be described in some detail in
the remainder of this section. This presentation should
also serve those readers primarily interested in the
nature of the underlying model and its applications.
These readers may wish to skip the mathematical deriva-
tionsin Sections 2 and 3, and resume with Sectlon 4 where
further discussion ensues.

We begin with the model of [3]. Suppose there are N
units which are to be allocated to M nonempty cells
with, say, L; units in the dth cell so that L, > 1, ¢ = 1,
2, «+, M, and ¥ L. = N. For vividness and sugges-
tiveness as to applications we shall sometimes refer to
the units as either species or people, and to the cells as
either genera or cities, respectively. The method of
allocation will be either of the Bose-Einstein form

ez = (0 )
M-1
or of the Maxwell-Boltzmann form
r {L{M, N}
= ¥ = MONITL: (L — DM, (12)

where L = (L1, -+-, Ly), and with the usual abuse of
notation we use the same symbal to refer to both the
random variable and to its value. Although the Maxwell-
Baltzmann alloeation is of interest in its own right, and
results for this ease will be derived below, it is the Bose-
Einstein alloecation that yields Zipf's Law, and for
simplicity the diseussion here will be confined to this case.

The novel aspect of the model consists in allowing A,
the number of eells, ta be random, given N, say with
distribution Fy(x) = Pr {MN~' < z|N}, while the allo-

. cation of units to cells is conditional upon both M and

N. We shall suppose throughout this discussion that
Fx(-) converges to a distribution F{-}, which is abhso-
lutely continuous with density f{-) (in fact many of the
results hold more generally), and that ¥ is large. Thus
we may visualize the model in terms of a large number
N of units (speecies, people), a random number M of
cells (genera, cities), with 1 < M < N, and MN ! having
approximately the limiting distribution (-}, and finally
with a Bose-Einstein allocation of units to cells, condi-
tional on M and N. Now let (s) be the number of cells
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with s units, and let ® denote a random variable having
the distribution F(-). It was shown in [37 that the
proportion of genera with s species, G(s)/M, then con-
verges in distribution to that of @(1 — @)=, If, for
example, ® has a uniform distribution on the unit
interval, then as N — 0,

MQWMMHﬁLyG—wH@=B@+UTH

which is a special and important. form of the Zipf relation-
ship, By appropriate choice of the distribution of &
approximate behavior of the form s+ can similarly
be achieved for the limiting expeected proportion of
genera with s species, and so this provides a weak sense
in which the generie-specific form of Zipf's Law can be
expected to hold. Stronger forms in which G{s)/M
converges in probability to sueh a function of s are
derived in [4].

Now consider the ordered values of the L. say,
LW > LA >...> [ eg the populations of the
cities in nonincreasing order. The relationship hetween
L@ and G(s) is that the event L® < g occurs if and
only if G(1) -+ Gla) > M — R + 1. For fized q, as
N grows large, Pr {L(® < a|N} goes to 0, but as is
shown below, a limiting distribution will exist if a = ay
goes to infinity appropriately. Thus while [37] concerns
the probability distribution of G(s), for fixed s, the
present article concerns the -probability distribution of

¥ ({s), i.e., the cumulative sum. The first result
obtained is that for any fixed R, and with MN-! con-
verging to a constant @, # 0, that L3 /In N converges
in probability to —[In {1 — @,)]~%. This result parallels
that of [3], where under the same conditions G(s)/M
converges in probability to &,(1 — ©,)¢'. Similarly, if
M is random, given N, with Fy(x) = Pr (MN~! < z|N}
converging to an absolutely continuous distribution
F(z), then it will be shown. that

Pr{LE/InN < q|N}
converges to
Pr{@ > 1 — ¢V} = H(a), say,

where ®& is a random variable having distribution F.
This result also parallels that of 3] in which under the
same conditions 7(s)/M is in the limit distributed like
&(1 — @)1,

However, since under the preceding model the limiting
distribution of L{® /In ¥ does not depend on R, we would
expect that a plot of L /In N against » would be flatter
than that implied by Zipf’s Law, where L ig roughly
proportional to r~*=). We now show how our original
model can bé modified so as to yield precisely such
behavior. We use the people-city terminology for vivid-
ness but the argument is of course general.

Thus suppose that a country consists of K regions, the
ith such region having ¥; people and M cities, and that
within each of these regions a Bose-Einstein allocation
of people to cities takes place, and that moreover, these
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allocations are mutually independent, given the N, This
new model is then simply an extended version of the
original model, and K = 1 is precisely the original model.
Now let »;, ¢ = 1, -+, K, be fixed, and let L& be the
population of the rth largest city in the ith region.
According to the result mentioned ahove, the limiting
distribution of each Z; = L{?/In N, is H(-),* and given
the N, these Z; are independent. Supposing that the ¥,
are sufficiently large so that the Z; can be regarded as a
sample from the limiting distribution, H{.), we can now
apply standard limit theorems to discuss the behavior of
the ordered values Z™M > Z® >...> Zud, In par-
ticular, by the Renyi representation theorem [77, we
cah express £ as

b1
S , =1,
+ +K—r+1):” ’

where the 4: are independent random variables each
having the exponential distribution with expectation 1.
Using this result it is now easily seen that by appropriate
choice of F(-), Zipf's Law will result. For example, if
@ ~ U0, 1], i.e., F{z) = x, then

H(g) = Pr{®@ > 1 — ¢7le} = glts,
and so A~ 42) = —(Ilnz]™", 0 < z < 1, Hence,

ze [5‘+ LR ]_1
Lk k-1 E—r+1] °
Now let X, denote a random variable having the
gamma distribution with shape parameter r, and scale
parameter 1, and thus density

[P ] ta—tes,

where I'(r) is the standard gamma function. Since
K{(&/K) + [8/(K - )] +---+ [&/(K — r + 1]}
i, n. the limit as K — =, distributed like > 1., §, l.e,
like Xy, it follows that K—'Z{") s in the limit distributed
like X¢'. For sufficiently large K we can then regard
K~'Z¢) as being distributed approximately like X,
so that

EB(KZ0] = E[X3]=(¢—- 11, for r>1,
Var [K-1Z¢] =~ Var [X ;]
= [ = 1% - 2T

To this extent a plot of the Z(! against » should ap-
proximate a Zipf Law with « = 0. Recalling that
Z; = L{ /In N, we see that if the In N are nearly equal,
and if the r; are all small engugh so that the limiting
results are applicable, then a plot of the ordered values
of the L, i.e., of the ordered city sizes, should also
approximate a Zipf Law with « = 0. A related result
holds, as shown in Section 4, if instead of selecting the

for 2>20,r >0,

for r> 2,

1 H in assumed to have an inverse.



Zipf's Law

r;th largest city in region ¢, we merely select a city at
random from that region and use its size in place of L{,

In a similar way we can show that a Zipf Law with
parameter o« will arise if the density of & is

@) ~ (1 + a)~lg—te/t+a)

as x goes to 0, where a > 0, and the symbol “~" here
and throughout means that the ratio goes to 1. It then
follows easily from the Renyi representation theorem
that Z¢1 /K= ig, in the limit as K — e, distributed like
Xt Hence for sufficiently large K we can regard
Z¢/K+e ag distributed approximately like X 1T, so
that :

E[Z0)/KWe] = BX 0 = Tir — 1 — a)/T(r) |

Var [Z¢) /K] = Var X ;1
= [T@){r—2— 2) — T2(r— 1 — a)]/T%r) ,

where we require » >'1 + a for the expectation to exist,
and r > 2 + 2& for the variance to be finite, Since
I'(r — 1 — &)/T(r) is approximately proportional to
r—ta) for large r, it follows that a plot of Z( against
should now approximate a Zipf Law with parameter a.
Just as for the case & = 0 this then implies that a plot
of ordered eity sizes should also approximate such a Zipf
Law.

So far the results quoted state that an approximation
to Zipf's Law is obtained if either the R,th largest city
in region %, or alternatively a randomly selected city
from region i, is used in forming the ranked city sizes
from the regions. A final result in Section 4 shows that
Zipf’s Law still holds if we plot the size of the rth largest
city in the country against r. This result seems to he the
most relevant to the graphs displayed by Zipf [11]. In
Bection 4 it is also shown that a Maxwell-Boltzmann
allocation leads to a very different result.

This concludes the description of the model yielding
the rank frequency form of Zipf’s Law. In Sections 2 and
3 the preceding results are derived, while in Section 4
further discussion ensues. In Section 5 motivation for the
Bose-Einstein distribution and other assumptions of the
model is proposed.

2. EXACT DISTRIBUTION OF L&

Let I, = (L, - - -, Ly) have any exchangeable distribu-
tion, and let L} > L > ... 2> LS he the ordered
values of the L, If G{s) is the number of L; having the
value s, then the event L < g occurs if and only if
G) +-- -+ Gla)y > M — R + 1. Far if L(® < ¢, then
LR+ o LD must also be <a, and so the numher of
L; with value <a, must be at least M — B -+ 1. The
converse follows similarly. It is worth noting also that

RL® < S, LO<N-M+R,
since each L; > 1, so that

LBy < BN - M+ R) .
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-Neow let V; denote the event I; > @, =1, ---, M.
Then

Pr{GQ) +-- + Gla) = r}
= Pr [exact[y‘M — r of the V; occur}.

But from the familiar result in Feller [2, p. 96, for any
m with 0 < m < M,

Pr {exactly m of the V; occur}
. A = , ig) + j
= 2.0 (—1)’( m )Sm+i1

where by exchangeahility
M

Se= () PEANTN NVl dor m2 1,
m

and by definition, 8, = 1. Hence,

Pr {exactly m of the V; occur}

- z!i‘o’”c_l)f(m ;L j)(mﬂi J.)Pr Vi) V]

= (ﬂ::) Zi—am(-—l)i(m ;- m)Pr (Vi N Vangsh -

Putting m = M — r, we have

Pr{G(1) +- -+ Gla) = 7}
M . o
- (D) () nne Ve
This yields our main result for the exact distribution of
L&)
Pr {L® < g}
=Pr{Gl)+-- -4+ Ga) > M — R+ 1}

= S ke (ﬂf) o~ 1)1(.:')

.Pr {Vl n e n VM—H—J“}
- M M—Rit+1 ;
:Zi=°(M_R+t-+—l)Zj=ﬂ ( 1)
.(M TEEe 1)Pr (Vin N Ve 21)
J

In particular, for B = 1,
Pr (LM < o} :
M M
- sl () e mnn v e

Equation {2.1) holds for any exchangeable distribution
of the finite sequence (L., - --, La), where the L, are
positive integers.

Now suppose, in addition, that the Bose-Einstein
model of Hill [3] holds, so that given M, N, the vector
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L is uniformly distributed over the set of its possible
values, with 1% L; = N. Then, conditional on M and N,

Pr [VI n“'n Vm}
= Pr {Ll > a, "‘1Lm> (I.}
= Yivarinza Pr{ln =41, -« «, Ly = ip)}

N — 1\ N -y~ —in~ 1
(1) D w7
N — 1IN /N —ma— 1
=(M—l) ( M1 )
Noting that if « is replaced by Na, the right side tends to
{1 — ma)¥'as N goes to infinity, and we have

lim Pr {N-'L® < a
N et

R—1 M M—_Ri-tt+1 .
= = = —-1 3
z‘“(M—R-;—c-i-l)E“ (=D

(M~R+t+l
J

For R =1 this limit is /2o (—1)/!H(1 — ja)¥-,
agreeing with the result in Wilks [9], sinee L{W/N is
asymptotically distributed like the largest observation
from a Dirichlet distribution with all parameters equal to
unity. We note that to obtain thig limiting distribution
we have let M/N tend to 0. This situation is of little
interest in regard to Zipf’s Law. Rather, we are concerned
with the ecarresponding limiting distributions when M /N
tends to some @, # 0, or when M /N has a4 nondegenerate
limiting distribution. I am not aware of any literature
concerning limiting distributions of order statistics from
such triangular arrays, although there are, of course, well
known results for sequences of independent identically
distributed random variables.

)[1»(R—H#j~ e ]t

3. LIMITING DISTRIBUTION OF L& /In N
ASM/N -6

We now prove two theorems concerning the limiting
distribution of L /In N. The Bose-Einstein model is
assumed throughout this section. The first theorem deals
with the case where M /N converges to a constant
0, 0 < 8, < 1, with all probabilities conditional on M
and ¥.

Theorem 1. If M and N go to infinity in such a way
that M/N — @, = ¢(1/In N), where 0 < @, < 1, then
for fixed R, L®/In N converges in probability to
~[In{1l - 6,7

Praof: From the equation

Pr{L® <a} =Pr{GQ)+ -+ Ga) > M - R+ 1},

it suffices to prave the theorem for the case R = 1. Now
let k& > 0 and define

ay = ay(@,k) = In [k/NO,)/In[1 — O,] ,

Journal of the American Statistical Associotion, December 1974

ga that
NOJL — @)W =k ,

Using Stirling’s formula it is easy to show that for fixed 4, .
(N — 1)_' (N
M—-1
where the symbol “~" means that the ratio of the two
gides tends to unity as M and N tend to infinity, Hence,

G2 (o)

k
~ {1 — @) e B
J!

‘—j&.N—-l

e )~(1ﬁ@¢,)w, (3.1)

Since the terms of the series are uniformly bounded in
absolute value by those of a summable function, it
therefore follows that

lim Pr {LO < ay}

-1 M IJM N—-l—lN—-jaN—l)
B lmz"'=°(_)(j)(M~1) ( M1

=¢*as M and N go to =,
Now define
a,=al@,)=—[ln(1 — &,)]",

g0 ay ~ a,In N.If ¢ > 0 and if M and ¥ are sufficiently
large, then (a, — €) In N < ay, 80 Pr (LY /In N < a, — ¢}
< Pr{L®M < gy}. Since the right side tends to e7%,
and sinece this holds for all & > @, it follows that
lim Pr{L®/In N < @, — ¢} exists and is 0. Similarly,
for sufficiently large M and N,

PriL®/InN < g,+ ¢} = Pr [L* < ax} ,

and again the right side tends to e~*, with the relationship
holding for all & > 0. Thus lim Pr {L/In N < a, + €}
exists and is 1. It follows that L®/In N converges in
probability te a, =—[In (1 — 8,)], as was claimed,
which completes the proof.

In our next theorem we allow M to he random, having

a. conditional distribution, given N. Given both M and
N, the Bose-Einstein model is assumed to hold, as before.

Theorem 2: Let Fy(x) = Pr{M/N < z|N}. If as N
goes to infinity, Fy(z) converges weakly to an absolutely
continuous distribution function F{z), then for any

fixed R,
[im Pr {L@®/In N < gl N}
N e

exists and is equal to

1

fo, @

where @(a) = 1 — ¢/
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Proof: Just as with Theorem 1, it suffices to prove the
result for B = 1. We have

Pr (LY/In N < a|N)
= YL Pr{L®/InN < a|M = j, N} Pr (M = j|N)

=fluN(x;a)dFN(ﬂi) '

where wvy(z; @) = Pr{L"/InN <a{M = [Nx], N},
and [y] is the largest integer less than or equal to .
Our proof consists in showing that »y{(z; a) converges to
the indicator function I,(z) which is 1 when z > @(a),
and 0 otherwise; and that this convergenece is uniform in
closed intervals not including 0, 1 or &(a). It will then
follow from the absolute continuity of F(z) and the
Helly-Bray Lemma, just as in [3, p. 12257, that

[l wy(z; a)dFunlx)

converges to
1

/;1 1.(@)dF(x) = f@m aP(z) |

as claimed.
Let x replace ®, in Theorem 1, and let

a(z) =—[n {1 — )],
anx(x; k) = In {&/Nz]/In {1 — 2) ,

for « # 0, 1. Then, according to Theorem 1, py(x; a)
converges to 0 if @ < afz), and to 1 if a4 > a(z). Since
a > afz) if and only if £ > ©(a), the paintwise con-
vergence to I.(z) follows. Next, in the proof of Theorem
L it was shown that Pr (L™ < ay(z; k)| M = [Nz], N}
converges to e7% An easy extension of that proof shows
that this convergence is in fact uniform in any elosed
interval not containing 0 or 1. Now let x < Q(a) — 8,
where § > 0, so that afz) > a + ¢, say, where ¢> 0.
Then, for N sufficiently large,

sl a) < vylx; alr) — €]
< Pr (L0 <gn(e k)| M = [N2], N} .

Since the right side goes to e~* uniformly for z in any
closed interval not containing 0 or 1, and since this holds
for all & > 0, it follows that vy (z; @) converges uniformly
to 0 for § < z < B{a) — 5. Similarly, it can be shown
that vx(z; @) converges uniformly to 1 for ®(a) + &
<& <1 — 35 Hence, »y{r; a) converges uniformly to
I,(z) in any closed interval not containing 0, 1, or G{a),
and Theorem 2 fallows.

It should be noted that Theorems 1 and 2 actually
prove more than was stated, Thusin the proof of Theorem
1, it was shown that

lim Pr {L® < In [k/N®,/In[l — @]} = e,

so that NO,(1 — )% has a limiting distribution,
namely the exponential distribution. Similarly it can be
shown that N@,(1 — &))" is in the limit distributed
like X(g), 1., has a gamma distribution with shape

1621

parameter R. Thus L /In N can bhe viewed as distrib-
uted like In[X 2 /N®,]/In NIn[1 — 8,] under the
conditions of Theorem 1. Under conditions of Theorem.
2 this holds with ® random.

4. EXAMPLES AND DISCUSSION

According to Theorem 2, Pr {L™®/In N < a| N} tends
to H{a) = [b F/(2)dz, where @(a) = 1 — ¢ Vs, Let
us now examine the behavior of the limit for those F of
interest in regard to Zipf's Law. Suppose that F'(z)

-~ gl as £ — 0, where ¥ > (. Then

' ata)
1 — H{a) m[ vy iz = [efa)]r ~ a7 as a —eo. -
0 .

If Z:, -+, Zg, are independent identically distributed
random variables, each with distribution H, and if
Z0Y > Z& > ... > Z{&) are their ordered values, then
by the Renyi representation theorem referred to in the
introduction, it follows that K[Z¢® ] is, in the limit
as K — o, distributed like Xz, i.e., the gamma dis-
tribution with shape parameter B. This result, which is
easily proved, depends upon the fact that 1 — H(a) ~a~".
A heuristic derivation, not using the representation
theorem, is instructive. For B = 1, we have from (2.2),

Pr (Z) < ag)
4 (K
= ZJ"=0 (_ljj( )PI‘ {Zl > ag, Tty ZJ' > G.'.K}
d

KN -
~ Zio(—l)"( _)GKT = (1 — ax )X as ax —w».
7

Hence, if ag” = A/K, for some x > 0, then
Pr (K(ZM)~r 2 A} = Pr{Z® < (K/\)Vr) - e,

s0 that the limiting distribution of K(Z0)~7 is that of
X¢i). Similarly, it is easily seen that

Pr {K(Z®E)—r = )}
= Pr{Z® < (K/N)Vr} = e oo A/t

80 that the limiting distribution f K{Z(#1)~* is that of
Xpy. If v = (1 + a)7, then for sufficiently large K, the
distribution of Z¢® /K= will be approximately that of
X&', Noting that EXG'* is approximately pro-
portional to R0+« and that the coefficient of variation
of X(}eﬁl te) goes to 0 as R — =, we anticipate that a plot
of Z¢) against r, for r = 1, ---, R, should be approxi-
mately a Zipf Law with parameter «. When A& is so small
that the expectation or variance of [ X g, ]~ "= does not,
exist, then the Zipf interpretation can be made in terms
of the median or some other characteristics of the dis-
tribution. For example, the median for [ X, ]! is 1.4,
while the median for [X ] is 6. It should be noted
that the dependencies between the Z(¢) are explicitly
revealed by the Renyl representation theorem. For
example, when o = 0,

) -1
Z0VE = K-1P+ 6’—+---+—i-] ,
K—-—r+1

K K-1
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and since the §: are mutually independent, the depen-
dence between Z ) and Z arises from the fact that they
have min [, s] common 3;. Realizations of such a 2
process, r = 1, 2, ... R tend to be even closer to the
Zipf form (here with & = 0) than would be suggested by
consideration of the marginal distributions of the Z(?
alone.

Now return to our extended model of the introduction,
i.e., with K regions, M; cities and N, people in the ith
such region, and with the basic Bose-Einstein allocation
scheme holding within the various regions independently
of one another. S8uppose that the M./N; are mutually
independent, and that each has limiting distribution F
as N; — <, where F is such that

afa)
1 — H(a) = f F{z)de ~ a7 a8 a 5=,
i]

and y = (1 + o)~ Let Ry, e =1, .-+, K, be any fixed
integers, and let L®? be the size of the R;th largest city
in region 4. If Z; = L /In N, it follows from Theorem 2
that each Z; has limiting distribution H. Since the Z, are
independent, it follows from the preceding discussion
that a plot of the ordered values Z¢ against r should be
approximately of the Zipf form with parameter @, pro-
vided that the N are sufficiently large and the R;
sufficiently small so that-the limit obtained in Theorem
2 yields a good approximation. Finally, if the In N, are
nearly equal, then a plot of the ordered values of the L{%?
against their rank order should also be approximately of
the Zipf form. For example, if the country were divided
into K regions with nearly equal values of In N;, and if
the largest city was taken from each region, then the
ordered values of the L" should yield a curve of the Zipf
form. This constitutes the first sense in which eur maodel
vields Zipf's Law.

We now show that a similar results holds if, instead of
choosing the E.th largest city in region {#, we merely
select a city at random from each region, independently
for the various regions. Let L} be the size of the ran-
domly selected eity from region ¢,¢ = 1, 2, - ., K. Since
the Bose-Eingtein model holds within each region, from
(3.1) we have

Pr {LT>a]M£,N,:} _
N,;‘— 1371 N,;—G.— 1
= ~ (1 — 8-'0 a.,
(M{—l) ( M, -1 ) ( .93

if, as in Theorem 1, M /N:— @,. If, as in Theorem 2,
F is the limiting distribution of M/~ ., then as N; — o,

1
Pr {Lf > a|N] _>f (1 — )eF'(x)dx |
i)
For F'{(#) ~ yx*¥'lasz—0,

fl (1 — 2)eP'(x)ds
’ ~ Ty + )T(a + 1)/T(a + 1 + 7} ~ Ca~
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a8 g —, where € is constant. Just as with the L{®, it
follows from the Renyi representation theorem that a
plot of the ordered values of the I} against their rank
order will approximate a Zipf Law. This constitutes the
second sense, or situation, in which our model leads to
Zipf's Law.

For the final sense in which our model leads to Zipf's
Law, let L;; be the population of the jth city in the
dth region, j =1, -, M, ¢=1, ..., K, and let L©) be
the rth largest of the L,;, i.e., L©) is the size of the rth
largest city in the country. We wish to show that a plat
of L9 against r, r = 1, 2, - - -, R, will be approximately
of the Zipf form. This would be immediate if each L
was in fact an LY for some ¢, in other words was the size
of the largest city in some region, and if the In N; were
nearly equal. For in this case a plot of L against
would in fact be a plot of the ardered values of the L&
against, their rank order, and it has already been shown
that the latter follows a Zipf Law. However, it can oceur,
for example, that the second largest eity in one region is
larger than the largest in other regions, so that two or
more cities from the same region may be among the R
largest L;;. It is clear that such an event eould lead to a
violation of Zipf’s Law. To take an extreme case, if the
B largest cities all come from the same region, then we
are hack in the single region model, and a plot of L9
against » will be too flat. However, in the Appendix it is
shown that in fact the probability of two or more of the
R largest cities coming from the same region goes to Q if
K and the N, go to infinity in an appropriate manner.
This can be made intuitively clear by the following line
of argument. Consider the case R = 2. We would like to
show that the probability that the two largest cities come
from the same region goes to 0. Supposing for simplicity
that the N, are equal, this probability is K Pr {L® = LY,
L = L®} where we have suppressed the conditioning
on K and the N. Now the event L® = L implies that
LP>1M j=2 - K But L®, L, ..., LY form
an independent sequence of random variables, each L
having the same distribution. Since, for each z,

PriL" <z} =Pr{L"<z} <Pr{L{ <z},

L® is stochastically smaller than the L. It is now
plausible that the probability that L{¥ is the maximum
of the above sequence goes to 0 faster than K—!, since
K=! would be the exaet probability if L{® had the same
distribution as the others. It then would follow that
KEPr{L® = LM L@ = L®) gges to 0 as K — o, as
desired. Now consider general E. Suppose that two or
more of the B largest cities come from the same region,
Then it follows that some L® must be among the R
largest city sizes. This can only oceur if that L is larger
than at least X — R + 1 of the L{". Again, just as in the
case B = 2, the fact that L{® is stochastically smaller
than the L{" leads to the desired result, i.e., that the
probability that two or more of the R largest cities come
from the same region goes to 0. This result is proved in
the appendix under a modest condition. We remark that
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for our application to Zipf's Law we only require that
this probability be small enough so that most of the L),
r=1, .-, I, are likely to come from different regions.
In this case a plot of L} against # will be equivalent to
a plot of the rth largest of the L{" against r, and thus
follow Zipf's Law.

The three different situations, in which we have shown
that the Zipf Law arises, suggest that the phenomenon
should oceur, at least approximately, under fairly general
conditions, Violations of some of the conditions under

which the limit theorems were aobtained should not have

too much effect—for example the N, could be random
and some dependencies between the various (M, N.)
could be allowed. The really eritical assumptions are the
assumptions of a Baose-Einstein allocation within regions,
and that the M /N, have a limiting distribution of the
required form. We now show that a Maxwell-Boltzmann
allocation within regions leads to a very different result.
The proof follows closely the proof of Theorem 1, with
the Bose-Einstein assumption of that theorem replaced
by a Maxwell-Boltzmann assumption.

Suppose that, given M and N, the vector L has the
Maxwell-Boltzmann distribution as defined by (1.2),
i.e., the L; — 1 have a multinomial distribution with M
cells, ¥ — M units, and probability #—! that a given
unit falls in a given cell. By (2.2),

Pr{L < q| M, N}
M M
- z;=u(—1)i(j)Pr A2l

where V, is the event L, > a. Let /N — &,, where
©®, # 0, 1. Since each L; — 1 has a binomial distribution
with N — M trials and probability M~ of success on a
given trial, and since such a limit of binomial distributions
converges to a Foisson distribution, it follows that

Pr{V;} = PriL;— 1> a} —pla) = S, e 0,/d!

where A, = 6,1 — 1. Similarly, Pr{V,N--NV,} —
[p(a))’ for each j. Just as in the proof of Theorem 1, we
now define ay = ax(0,, k) to be such that Mplay) — k,
80 that Pr (LY < ay|M, N} —le~*, where £ > 0. But
pla) ~ e repy/al ag a —» o, and using Stirling’s formula. it
is easily verified that for €y = C'In N/Inln N, we have
Mp(Cx) goes to 0 if € > 1, and goes to o if ¢ < 1. It
follows that Pr {L®M £ Cy|M, N} — 1 if ¢ > 1, and
—0if ¢ < 1, so that LP[ln N/In In N]~* converges in
probability to 1. This behavior is very different from
that in the Bose-Einstein case, where L) /In N converges
in probability to —[In (1 — ®,)]. Since the same result
holds for LR we see that ZipP’s Law cannot arise for a
Maxwell-Boltzmann allocation scheme. -

5. MOTIVATION AND DISCUSSION OF ASSUMPTIONS

I bhave presented a simple mathematical madel, of
which both the rank-frequency and generic-specific forms
of Zipf's Law are a consequence. It is therefore a model
which yields results that are in substantial accord with
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great guantities of data drawn from a variety of scientific
areas. For this reason alone it would be of interest to
inquire as to the plausibility of the assumptions of that
model in each of the areas to which Zipf's Law seems to
apply. In each such area, however, such a study would
be a major undertaking of itself. Use of the geographic
and taxonomic examples in this article was not meant to
imply that such assumptions have been verified in these
situations, but merely that they are waorthy of con-
sideration, and of being tentatively entertained, precisely
because the examples are known to provide remarkably
good fita to Zipf's Law. I prefer to think of the model as
a skeletal model having a simple and general structure,
which can be fleshed out in different ways in different
scientifie areas. The basic structure, ingredients and
assumptions of the model will now bhe described, and =o
far as possible, motivated. Although, for vividness, the
city-size and generic-specific terminology will again be
used, it is hoped that the reader will view the model in a
more general sense.

The first assumption is that of regions (families), in
which the @; for different regions (families) are approxi-
mately independent, and similarly the allocations of
people to eities within regions (species to genera within
families) are also approximately independent. It is also
assumed that despite such approximate independence (or
autonomy) between regions, similar underlying forces or
constraints operate within the wvarious regions, thus
tending to produce approximately the same form of
distribution for the ©,, and the same method of allocation
of people to cities, within the various regions. In any
application there will of eourse be some flexibility -as to
the precise definition of a region. For example, on a global
scale, such regions might in fact each be countries of a
certain type, while on a national scale, they might be
certain natural geographic-political-economic entities. In
the context of personal income distribution, the role of a
region might be played by a corporation or even an entire
industry, while in the context of word frequency usage,
it might be played by a paragraph or perhaps a chapter.
The model only requires that there be some way of
decomposing the totality of units into subsets for which
the assumptions are approximately valid. So far, the
assumptions are of a largely qualitative nature, and do
not seem wholly unreasonahle.

The next assumption ecncerns the settling down, for
large N, of the distribution of ©; to some limiting
distribution F, common to the various regions. Such
settling down seems plausible on the basis of continuity
considerations. Thus one would not anticipate that slight
changes in N, for large N, would greatly alter the
distribution of ., given N; The use of a continuous
distribution F as the limiting distribution provides, in
the usual way, an approximation to the true discrete
distribution, for large N . The assumed similarity of the
underlying forces and constraints within the various
regions then suggests that the same F should be used
for each region. '
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The next assumption is that F(z) ~ Cz as z — 0, for
some y > 0. The family of such distributions is a large
one, so this assumption is not particularly restrictive.
Moreover, the values 0 < a < 1, for the rank-frequency
form of Zipf’s Law, proportional to »—%+), correspand to
particularly simple distributions F, eg., « = 0 corre-
sponds to v = 1 (which includes the uniform distribu-
tion), while & = 1 corresponds to y = % (which includes
the arc sine distribution). Since there is substantial
evidence that 0 < @ < 2 in a variety of scientific areas,
this seems to me to lend considerable support to the entire
model. By contrast, if in order to obtain Zipf's Law it
had been necessary to ehoose F of some unusual and
exotic form, then this would have made the model some-
what less plausible.

In my opinion, the really critical assumption of the
model is that of a Bose-Einstein allocation of people to
cities within regions (species to genera within families).
Although the Bose-Einstein distribution need not hold
literally to obtain Zipf’s Law, gross violations will lead
to a very different result. For-example, if the Bose-Ein-
stein allocation were replaced by a Maxwell-Boltzmann
allocation, then, as shown previously L™ [In N /IlnIn N ]!
converges in probability to [ as N grows large, and a plot
of L against + will be much flatter than under Zipf's
Law. The essential difference between the two allocation
schemes seems to be that under the Bose-Finstein model
there will be much greater variability in city sizes within
a region, including typically a few extremely large cities,
while under the Maxwell-Boltzmann model such city
sizes tend to be more nearly equal. I conjecture that
other allgcation schemés implying substantial variability
of city sizes within regions will also yield an approxima-
tion to Zipf's Law. In fact, I would now like to give an
interpretation of the Bose-Einstein model which may
serve both to make it more palatable as an assumption,
and also to shed light on the mathematics and robustness
of the Zipf Laws. SBuppose that N units are to be allocated
te M nonempty cells, and define I/ to be the index of the
cell to which the jth unit goes, § = 1,2, -+, N. The cells
are indexed say by the integers 1,2, - .-, M. Let U, = 1,
[7a=2, ---, Uy =DM, to insure that all cells are
occupied, so that the remaining n = ¥ — M units cdn be
allocated without any constraints. Letting L; be the total
number of units in the ¢th cell, ¢ = 1, -+, M, it is well
known that a Bose-Einstein distribution for L = (L, - - -,
La)y Li > 1, T, L, = N, is obtained by introducing a
probability vector p = (py, - -, pu), M p; =1, such
that given p, the n remaining units generate a multi-
nomial distribution, with the p; as cell probabilities,
while p itself has a uniform distribution on the simplex
Y X, p.=1, ie, p has the Dirichlet distribution with
all parameters equal to unity. This follows as a. special
case of the more general result for p having a Dirichlet

distribution with density

$(@) = D(Titra) M pe I T@) 1=, a >0 |
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Here, if 1 = (4, -, Iy}, 1: > 0, =X, L, = n, then it is
easily verified that
M
n!F(Zil a;) [Tz TQ: + o)

Pr{l} =
- Tn+ 37 o) 1¥ Tl + 1)’ o

which reduces to (§-1)~' when a«; = 1. The Maxwell-
Boltzmann model can he interpreted as the limiting case
of (5.1). For the general
Dirichlet-multinomial model, the conditional distribution
of p, given Uy, - -, Uiy, has a Dirichlet density pro-
portional to

K] = (g = ¢+ = @y >0

M Lite)+ai—l
Hi=1 i 3
where [ 4+ I;(r) is the number of these M + » units in
the ¢th cell, and.so

Pr {UM+T+1 = £1U11 Tty UM-i—r}

= Elp:| Uy, -, Unryr
= [L(r) + @)/ + Ticras) .

In particular, under the Bose-Einstein model, where
a; = I, the probability that a next unit.goes to cell i,
given the allocation of the previous units, is propertional
to the number of units already in that eell. Similarly, if
n* additional units are to be allocated to the cells, then the
expected number to be added to cell 7 is n*{l(r) + 1}/
(M + r) under this model. For city sizes, the Bose-
Einstein model thus implies that expected increases in
city size are proportional to existing size, which seems
plausible as an approximation. Furthermore, I would
conjecture that replacing the Bose-Einstein model by a
general Dirichlet-multinomial model, where p has a

non-degenerate symmetric distribution, should alse yield
Zipf Laws in much the same way that the Bose-Einstein
model does, which would perhaps partially explain the
wide applicability of these laws. The degeneracy of the
distribution of p under the Maxwell-Boltzmann model,

which tends to make city sizes too nearly equal, would
also perhaps account for the wery different behavior
under this model,

From one point of view, we have merely replaced the
mysterious phenomenon of Zipf's Law by an equally
mysterious set of assumptions. However, such assump-
tlons, which are of a simple and general character, can be
studied separately in each of the areas where Zipf's Law
seems to apply, and by noting diserepancies, one can
hope to modify them appropriately. Furthermore, it
seems to me that it is the surprising quantity and variety
of data fitting Zipf’s Law that strongly suggests the need
for a general skeletal model, such as the one presented
here, which can then be fleshed out in a corresponding
variety of ways. SBupport for this model derives from the
fact that it is both simple and general, not wholly un-
reasonable as an approximation, and most importantly,
that it is consistent with the vast collections of data
obtained by Zipf and others.

I anticipate, however, that many scientists will reject
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the Bose-Einstein model, even as an approximation, in
regard to their partieular area, on the grounds of its being
too simple to deseribe the complex phenomena in ques-
tion. I sympathize with such a view, but at the same time
I wonder whether this is not possibly a matter of not
seeing the forest because of the trees. For example, in
regard to eity size, to someone who is familiar with the
enormous complexity involved in birth rates, migration,
etc,, the Bose-Einstein Taw will surely seem far too
gimple. Similarly, to a taxonomist, familiar with all the
tedious and complex analysis that goes into the classifi-
cation of organisms, not to mention the complexity of the
undertying evolutionary process, the Bose-Finstein dis-
tributioh must seem unreasonably simple. But perhaps
such intimate knowledge of the details only obscures
what, from the view of an outsider, might in some re-
spects be a relatively simple process. It does not seem too
outlandish to imagine that the net result of a large num-
ber of complex interacting forces might be such a simple
process. It would then be of interest to try to determine
how the Bose-Einatein allocation might arise out of such
complexity. In this connection, it should be understood
that ultimately one is dealing with a dynamie process
where changes oceur as a funetion of time. For example,
Zipf's Law for eity sizes has held until very recently, but
the development of suburbia secems to have altered
matters to a certain extent. A more sophisticated model
than that presented here would deal with the dynamies
of the situation, and not merely the one-dimensicnal view
obtained at a given point in tite.

Of course, other models have been formulated, and
other approaches taken, in regard to justifying the Zipf
{or Pareto) Law, most notably those of Mandelbrot 6]
and Simen [8]. There are some interesting relationships
between the various models for Zipf's Law, and compari-
sons between these models will be considered in a sub-
sequent article.

APPENDIX

We now prove a lemma relative to the probability that twa ar
mote of the R largest cities come fram the same region.

Lemma: Let ¥y, +++, Y be K independent nonnegative random
variables, ¥, having absolutely continuous distribution W.(-}, and
¥y, +++, ¥ sll having the common absolutely continuous distribution
Wa(-), where Wa(y) > 0 for y > 0. Suppose W, () /Wa(y) — 0 as
g — o, Then for any fixed B, K Pr {¥, bas rank R in the
sequence} —» 0 a5 K — o0,

Praof :

K Pr | ¥, has rank B

-k (5 ) [ 0 - Wi i

K-—1 - .
= KK -E+1)™ (R _ 1)[ (W1 )/ Way)]
L1 = Wiy} J*1dP{y) ,
where P(y) = [W(z) J¥~2, Thus,
K Pr {V, has rank R} —K(K—R+1)—.(K—1)
P B R-1

B{IW(X)/WXT0L — Wa(X) 15
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where X is a random variable having distribution P(-), i.e,, X is
distributed like the maximum of £ — R + 1 independent random
variables from the distribution Ws{-). But

K&~ R+ 07 () B0 - Wl =1,

since each of K independent random wvariables with distribution
Wal+) is equally likely to have rank R. Next, since X converges in
probability to = as K — «, and since Wi(y)/W’z(y) —0agy —ea,
it. follows that W1(X)/W4(X) 50 as K —w. In fact; breaking the
expectation up into the integral from 0 to Cx, and the integral from
Cx ta o, where Ox — =, we have

TR [t

Here it is required only that Cx — « and be such that
KE[WCr)1E B =0 as K —e,
This completes the proof of the lemma.

’An important illustration of this lemama occurs when Wi (y) = ev,
Waly) = yev.

The application of the lerama is as follows. As discussed in Section
4, if twa or more of the R largest cities are from the same region, then
some L{ must be among the R largest city sizes, and so some L{*
must be larger than at least X — R + 1 of the L{!. Thus

Pr {two or more of the R largest are from same region}

< K(R — 1) Pr {L{ has rank B — 1 in the sequence
L®, L, - LYY .

Assuming for simplicity that the N; are equal, it follows that the
LY are identically distributed. Since the M.N; ' are mutually
independent, and the Bose-Finstein allocations within the various
regions are also independent, {2, L8, - -+, L form a sequence of
independent random variables. If we could apply the lemma with
V=LV, =LY, j=2 -, K, we would obtain X Pr {L® has
rank B — 1 in sequence} — 0, ag K — o, yielding the desired resutt.
However, the LI have a discrete distribution. But although, for
simplicity, the lemma was proved in the absolutely continuous case,
where the possibility of ties eould be ignored, a similar result holds
in the diserete case too. Here the condition W) () /W (y) — 0 would
be replaced by Pr (L = y}/Pr{L{ =y} —0 as y —«. Since
L{® is stochastically smaller than L§, it is at least plausible that
such 4 condition might hold.

It should be remarked that to obtain our result we must let che
In ¥; go to « relatively slowly as compared to K. For, by the
remarks following the proof of Theorem 2, L9 /ln N; is distributed
approximately like In [ X /N,9:]/In Niln (I — &;) as N;— =,
where ©; = M;N!; and so if the N; went to « with K fixed, then
the L¥[In N;]t + [In (1 — @] would all converge in prob-
ahility to 0,7 = 1,2, -+ -, K. In this case, the region with the smallest
& would tend to have the R largest cities, which is contrary to the
desired result. On the other hand, if K — <« sufficiently fast relative
to the ln N, we obhtain the desired result. For moderate X and ln N,
it seems plausible that the probability that several of the R largest
dities eome from the same region will be small, but the question is
delicate.

[ Received September 1973. Revised March 1874.]
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